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"Science is -built ;of' facts0 as a house is built of

!·. , ; .

H. -Poincar , ,Science and H:p othes'i s) '

...... ...i:.,.'.- ..:.,

THEORY OF STOCHASTIC GRAPHS APPLIED TO THE .. ' ;:.-- ,.: '

RANDOM SYNTSINTS AND DEGRADATION OF MULTIFUNCTIONAL

MACROMOLECULAR COMPOUNDS : '"

ture of their macromolecular lattices. Thus one is led to distin uish-.i,

.. 'Clattiude-Marces. Bruneau(
)

While th"Science synthesis built one-dimensional or linear polymersthrough.......... '

polymerizastion or polycondensationn of factsional monomers leads to
scieonce than a p i nfusibleandof rocks a house." .

solve· (H. Poinca rde Science and Hypothem.s). 

Thesi for oINTRODUCTION .

If the remarkable properties.of macromolecular substances are .' L··'

related to their large size, they depend no less.closely on the struc' .

ture of their macromolecular lattices. Thus, one' is led to distinguish - ':

different classes of polymers according to the dimensionality of the ·. ;.'a::

-lattices. '', ,,' i.. '

While the synthesis of one-dimensional or linear polymers through....
)

'
"

' "

polymerization or polycondensation'of bifunctional monomers l:eads to ' -'
(usable) products soluble in appropriate solvents, three-dimensional .i·j":">
polymers obtained from monomers - of which. all or a part -has a ·func,. :.'.-'.,:,:·.
tionality of more than two - are infusible, and i'nsoluble '-in all. '..... .--..-!:i -',':

solvents which do not degrade them. '" '... .::i[-..' '··:

Thesis for doctorate in Physical' Sciences, Paris, 1966. -; ..... ' 



The generally sudden appearance of these properties is'evidenced

by the massive coagulation of the reaction medium and seems to'depend.:;,_

only on its composition: the phenomenon of gelification. ..-

The interpretation and anticipation of this phenomenon have led .

to numerous studies and the -propounding of theories, the most elaborate.. :

of which are not always subject to easy experimental verification, :..-

while the simplest ones necessarily involve disregarding certain very ·" ,-.."'

obvious data, such as the existence of intramolecular reactions in ..

particular.

Thus, we have been led to propose a theoretical interpretation.. .'

of the behavior of multifunctional macromolecular systems, chiefly

from both a structural and stochastic point of view based on elementary.:;- .

data from the theory of graphs involving the axiomatic definition of '.:;

the important concepts of intermolecular and intramolecular reactions.' :-'..

These notions, related to the number of molecules and the number of

cycles, respectively, enable us through a topological study of the

lattice to arrive at a definition of..its three-dimensional nature, .... :.,'

while the evolution of the lattice may be interpreted in terms of fa:- '. '

statistical study of the connections which may occur between.the 

different molecular components. 

' '2':~:~. ' ... ~: .~ . ; ::. .::~: -;.. ' " - .-:

..
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FIRST PART

EXPERIMENTAL DATA AND .PREVIOUS STUDIES

1. Definitions. Experimental data. - .

]. · .- ; -,."

If one were to give a genetic deffinition of three-dimensional ..::.~L; ....

polymers, one would have to say that they are derived from the poly ':

merization of monomers, part of which at least is multifunctional, '

i.e., has a functionality equal to at least three. The term polymeri-..:

zation should be taken here in its widest sense, and should include :,: .

polycondensation or polyaddition':in the strict chemical sense [1].' E :."

Such a definition enables us to distinguish three-dimensional polymers '"

from the linear polymers derived from the polymerization of exclusively-':

,bifunctional monomers.' It shows immediately the.importance of func-..-:.'

tionality, a generalization of the old concept of valence, .which:

should be regarded as the number of chemical combinations of a certain:: .- ;.

(primary, for instance) into which a monomer may enter under adequate: '

chemical reactioniconditions.

From the experimental point 'ofview, the behavior in the course :

of synthesis (polymerization, polycondensation, etc.) and particularly'.'

the Theological behavior of the two classes of polymers defined above ;..

is quite different. While the viscosity of bifunctional systems grows;:

rapidly as a function of the degree of advancement p of the reaction, .': .

leading to fusible polymers (thermoplastic) soluble in appropriate

solvents, the viscosity of multifunctional systems, nearing a certain'

value of the degree of advancement of the reaction known as the critical"'.;'.'

value, increases almost hyperbolically to become quickly, even sharply,:L -

infinite at the same value (Figurel 1).
". " .~ . "

At experimental temperatures which may on.occasion reach more ...

than 2000 C, the medium assumes the aspect of a mass which on the: .'..:::

macroscopic leveI.lacks all flow 'properties and resembles a Jelly. :: 
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:'.Gelification is said to occur.

-.viscosity: Ii .- e , a , .'"'The critical value of the reaction' .'.
-iedstate: I;I degree of advancement is therefore"':<,!, :

/i: |! 1 :e l',often referred to as the point of':
'

,
. gelification . , Lgelification or gel point,.'

point' '
- __ L . " ., ,. : .

0. c ' ; r 2. Classical theories.reaction rate Applcatons
.... t ~ ':1 Applications.

Figure 1. Rheological behavior'
of a multifunctional polymer 
during synthesis. The detection of such a·

:..phenomenon provides a clue to the

importance of the role of function-'

ality. From the theoretical point of view, Carother [2] was the first' -.

to propose a simple relation permitting the calculation of the critical;'.

value of the degree of advancement .of the reaction. He states that :.
'

gelification occurs when - no other intermolecular connection being',.':

possible - the macromolecular compound is made up of a giant molecule.'.

The gelification point· is.then found from the general Formula (1) for ': ". .:-

.an infinitely large degree of polymerization:'. ' -. :%,L: 4,

(2)
. ' - 0 ' ,~5 ~jL ) ?-. ';, .,,' '-. ..

In these relations, f is the average functionality of the system''--

if it contains monomers of different functionalities. Thus, for a

system made up of"two moles of. glycerol and three moles of phthai . ..

anhydride with an average functionality of f = 2.4, Relation (2) yields..,.-'-,-

a theoretical value of irc,,O..:-, on the order of the experimental values,:l', '...

determined for various diacids [3,:i5, 6, 7] and especially .0.796 in '-:;

the present case [4]. 

Later, Flory [8-12], on the basis of statistical considerations,

established a set of relationships, which enable us to find the critical1.',,'

value Pc' the distribution of average molecular masses and the arrange-.:-i:'..

ment of soluble, gelified fractions for a certain number of miacromole- i

cular systems . .. .. ...'.:. .

' - : . ,. , ... : , ,.-.. . ;



The theory is based chiefly on the following two hypotheses: ..'.

1. All functional groupings are equally reactive. '

2. Any intramolecular reaction leading to cyclical structures .'::

is assumed not to occur.. . .

, . . -

These two hypotheses are corroborated by a number of experimental.'.

observations. Thus, Flory [13, 14, 15] showed for linear polymers ': .

that the reactivity of functional groupings did not depend on their 

size, at least if the first stage of the reaction was disregarded, .':.

and likewise the final stage as was shown later [16]. Moreover, '..

Kienle [4-6] and Bradley [17, 18] showed for certain multifunctional

polymers that, in the stages preceding gelification, the formation of-/ . '·

intramolecular bonds was negligible. -

The important parameter in Flory's theory is the "branching

coefficient" a defined as the probability of a reactive group belong-.."`'..'.:

ing to a multifunctional unit leading, by means of a chain of bifunc-:: ...

tional units, to another multifunctional unit. The physico-chemicalv.'ii- :.

criterion for the occurrence of gelification is still the existencel '

of infinitely large molecules whose dimensions would be, one way. or' :

another, on the order of those of the reaction recipient. The almost:.-';

certain existence of such a lattice, therefore, determines the ' :
critical value of a: .

=-1 _(3)

an expression in which f is no longer the average functionality, but..:: ' ,'
the functionality of the branching units.

In-the case of polycondensation which includes, for instance, 

bifunctional.and trifunctional units of type A and bifunctionailB :.'i'.. 'i; '

units liable to, interact, the computation of a as a function. of p p .:% .
leads'to the expression: .. -....

: _ , .. !.; * F .; . ,,a~~~~~~~~~~~~~~~~~~~~-., ' .. 4. A



where r : ratio of number of functional groupings of type A to

number of functional groupings of type B.

p-: proportion of A groupings belonging to branching units.
'

·. :

PA : probability of an A grouping having reacted.

For the preceding stoichiometric phthalic anhydride-glycerol. 

system, the functionality is f = 3. The relations above lead to a, 'i::', .

theoretical critical value of Pc = 0.707. For the adipic acid-

pentaerythritol system, also stoichi.ometric, whose critical value `. .

determined experimentally is approximately 0.63 [19] to 0.65 [21],

calculations yield a slightly lower:critical value of Pc = 0.577.

For more complex systems, such as mixtures of diacids, triacids, and: ,'. '

dialcohols in variable proportions, 'the calculated values are still

lower than the experimental values [8], while under the same conditions 

one can easily show that the values'calculated from Carother's

Relation (2) would be greater.

According to Flory, the discrepancy arises from the fact that the'' .

theory does not take into account, according to the second hypothesis ': ":',

the possible intramolecular reactions. It was thought that this point/[;..-.;l:.`

of view could be corroborated by carrying out polycondensation in such''i.:' .

a way as to eliminate intramolecular, reactions. For that purpose, -:..

Stockmayer and Weill [20] measured the gelification points of the

adipic acid-pentaerythritol system in solution in an inert solvent, ., ',:·

first at low concentrations where the formation of cycles would be .:'''" ' '

significant, and then at increasing concentrations, and finally,

extrapolated from the preceding results at "infinite" concentrations ..'::.

(zero volume) where any possibility'of forming. intramolecular bonds '.:4

would be eliminated. Under these conditions, obtaining a value of' i".':

= 0.578 + 0.005

corroborated by similar experiments in different systems [22] appears.::.;.:

to constitute a certain confirmation of the theory.

This theory also enables us to' find the distribution of average. '

molecular quantities; but only in the case of systems including'.:. i' 
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trifunctional units or tetrafunctional systems with a lengthwise

distribution of uniform chains. Thus, it was generalized for systems ..

including multifunctional units and lengthwise distributions of any:

kind of chain by ;Stockmayer [23, 241]. The criterion for the occurrence, -

of gelification is confirmed, but the complexity of the expressions

yielding the average molecular masses makes their practical use very,,.

awkward .

The problem of the formation of cyclical structures, on which :"','*"

the legitimacy of the preceding theories depends to a:considerable . .

degree, has given rise to numerous studies dealing with both the ,. . ..

possibility of cyclization of linear polymers such as decamethylene- '"..'':

diol polyadipate [25] or multifunctional polymers from both a

theoretical [26, 27] and experimental [28, 29, 30] point of view.

The study of polyesters and polyalkoxysilanes in solutions showed'.

that an increase in the value of the gelification point.with a reduc-,': ..'..

tion in average functionality and increased dilution could even lead.." :

to the suppression of the gelification phenomenon. Polymers: with: .'

frigid molecular chains, however, appear to depend less on the effects'.".',:'.

of dilution [29].

Initially established by taking the polycondensation process as ,i:-:,'

a model, the original theories were quickly extended to the process ':':

of vinyl type polymerization by Stockmayer [24]. He shows,:with the .::.'

special example of vinyl-divinyl copolymers, that it is possible underi:.:

certain conditions to interpret the general behavior of these systems,"'.

[33] by assuming that the polymerization reactions in linear chains 

and bridging are'not concomitant [31, 32], but consecutive.

However, experimentation shows that the interpretation of the " '

polymerization process by the classical theory may well lead to

serious miscalculations.. Thus, Walling [34], in making a study of. :,:',...

the gelification of glycol methyl-dimethacrylate methacrylate'or

-vinyl vinyl-diadipate acetate in solution was able to observe gelifi-,.-: .

cation points quite.different 'from.:the calculated ones. Only'systems.'.,'.,::'

including bifunctional units in proportions of less than' 0.2% could:: :'.:.

be regarded as giving experimental: values in reasonable agreement 

71 ·~~~~~~~~~~~~~~~~~~~~~~~~~~~. . .' .. '



.with the theory. It appears that the cause of this discrepancy must ,'''''.'-:

be sought in the special nature of''the polymerization mechanism .in-.: ..

volving propagation rates much greater than diffusion rates. -3 4]', and -

probably also in the effects of'dilution [30]. Comparable difficulties .

,were likewise encountered in the interpretation of the behavior of :..'... '

cialyl polyphthalates, abundantly studied by Simpson [35-38].':" Never-. .

theless, Gordon [40, 41] refutes: the effects of diffusion on the

delay occasioned by gelification, and invokes instead either the

presence of a chain transfer reaction [40] or the formation of cycles'::.: ./ .

involving the tendency of acrylic or allylic groupings with a like

motif to be incorporated into the linear chain [36, 39, 40] or else['-''!; '

the formation of multiple bridgings [38]. Nevertheless, Gordon [4:2]. ''11'.

showed that, to the extent that intra-chain secondary polymerization

reactions are known, the'classical theory may be used, since the 

chain transfer reactions and multiple bridgings have only a negligible..': :-

effect on the general development' of the process.

In spite of the existence of later works [43, 44], a certain : ~. ~

number of points still remain unexplained. Particularly, it is poorly .:

understood why the three dialylic: phthalates have similar gelification.;-1..'.. '

points, while thebortho-isomer exhibits a decided tendency.toward :.

intra-chain polymerization [45].

All of these difficulties appear enough to justify the trend 

toward theoretical and experimental studies aimed at perfecting the:. :' .

classical theory to be oriented toward the study of polycondensable .

systems instead. Thus, the principal modifications of the theory,'

whose purpose it Was to reduce the tfundamental hypotheses, dealt with:, ' H'i''

such systems. ......

Thus, the behavior of systems with a certain category of similar'?''.

functional groupings, but with different reactivities, was examined-.':'..''. '

from a general point of view [46, 50] or for the purpose of making: . .

statistical models of macromolecules of natural origin-[51]. The

distribution of functional groupings according to their nature at th'e'::'....:

monomer level was also examined [52], as well as the' effects of mono-..'

functional monomers ultimately endowed with their own reactivity [53:]. i

! , , i , |' -'
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In a general:way, the gelification theory was applied to a number .''

of multifunctional polycondensableo.r polymerizable systems in ,onrder.. ... :' .

to justify - or to anticipate - the three-dimensional structure to '::'.';

which, not only gelification, but 'also reticulation and vulcanization '..'

are related. In this regard, we shall mention the elastomers [54,. 55], , - ..
certain types of polyamides [56, 571, phenol, polymerizable'resin oils.;..0:
[58], thermally polymerizable oils [59, 60, 61], .polyepoxide compounds'
[62, 63] and the formophenol system which provided the occasion for a -,

*new theoretical discussion [64]. i ::. ; -

It was extended to the study of the behavior of multifunctional'. -.;.

macromolecular systems of mineral [65, 66] and-natural [67] origin,
'

.

particularly to the interpretation of certain transitory combinations.- :'

of living substances such as the antigen-antibody system [68, .72]... 

3. Modern theories. : '

A statistical'study of multifunctional polymers was taken up

recently by Gordon [73]. It was based on new mathematical bases from .... 

the studies of Good [74, 75] carried out in the more general framework.";.'
:

of the "theory of'processes in a :series" [76].

One of the most attractive aspects of Gordon's developments is

that the use of generating functions permits us to calculate the 

different average molecular masses from the gelification point and the'

soluble fraction much more directly than by the use of the calculus of.:,

probabilities. It also enables us, in the special case of the adipic

acid-glycerol case, to take into consideration the partial or complete' !,

elimination of the water produced. by polycondensation as well as the

effects of the different esterification.rates of the primary and ... .

secondary hydroxyis. The preceding factors were generalized to cover] :'~''

"non-random," polycondensation, i'.e., to the case where the formation. ... '

of chemical bonds is affected by the already existing bonds in the . .

molecules. It is.valid to assume that its influence is linear, with,, ';

good approximation - in other words, the free energy of bond formation :'

is proportional td the number. of bonds already established and born':'"':.:

only by the first contracting patterns. Thus,'we speak ofa'"

9 ' . ..



"first-shell substitution effect". .On this effect will depend the

respective rates of formation and breaking of bonds, i.e., the equili-'.. 

brium constant of; the polycondensation reaction. Thus, the author'.,:-" 'i'. ': .. '

computes for the two extreme .cases, using the generating function of. '

bond distribution, the average molecular masses, the gelification ; ..

point, and the soluble fraction [7.71. .

This theory was applied to the statistical description of the

chain conformations of highly ramified polymers [781], to the calcui

lation of the statistical parameters of the theory of rubber elasticity..:'

[79], and quite recently to the process of competitive formation of ;'
linear and cyclical structures in polymerization [80].. .

. . ..

Still more recently, Whittle [81] examines the question from a';I..7-..'..'

primarily mathematical point of view as a general process of. an

aggregation of entities bearing "sites" between which bonds can be

established. At first, he considers systems made of a single variety. .-...

of units, all of whose sites are equally reactive. He gives a com-..' '.

plete description of the aggregation process through the use of a.'

generating function of the distribution of different types of aggre-s'"~.'. ".

gates. Later, he extends the preceding results to the case of

systems made up of different units containing nonequireactive sites...:-' '-.

Acknowledging that the bonding energy of a unit depends only on the '' .

number and nature of the units to which it is connected, the genera-':'''' .

ting function (established from considerations of combinatory- .

analysis) may be advantageously replaced by a system of partial differ-..

ential, nonlinear, first-order equations established as a function of"'i":'':.

the equilibrium conditions. Then, by removing the interdiction of. I: .'.. '

producing cyclical structures, we finish with a simplification, since ..''s' ,

the preceding differential equation becomes linear [82]. .. . ..

. ; i .. . ,_:., 4 ,"' '

However attractive it may be as a result of its wide generality','.

it is unfortunately difficult to 'state that this last theory can,: in' '...

the immediate future, be of any practical use.

10
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·4. Preliminary considerations ' . ......

The development of classical theories is characterized by a-. ' ... 

'tendency toward generalization aimed at the progressive suppression 

* of the multiple aspects of the two basic simplifying hypotheses and,

consequently,' by the construction'of mathematical models ever closer

to real models. If,- in this regard, the hypothesis of equiprobability :.'i

of producing bonds between sites (equireactivity of chemical functions).' ', '
'

is no longer indicated because of the difficulty of theoretical treat-.

.ment. On the other hand, the hypothesis which assumes the absence of'.3''!.;;'

lattice cyclization has long been retained. Moreover, in its modern

form, it is implicitly contained.in the concept of processes in a

series whose corresponding type-diagram (graph) belongs to the' :family,- 0'',

of topological 'trees (Figure 2). Only recently, as we have just seen,:k;,!.

have certain authors been able toic.onceive of the possible existence ';. :'"

of cycles by suitable modifications"'of the description of a process

in series. ..

If it were not questionable that the structure conditions all...' :.

the properties of multifunctional macromolecular compounds, the ';-..''

special structure derived from the possibility of cyclization would '.

likewise have to contribute to the interpretation of these properties,'y'.'..

one of the principal phenomenological aspects of which is gelification. :....-

This contribution would have to permit us to make up the differential:.'

observed between the gel points calculated from classical 'theories

and those found experimentally by massive polycondensation of multi-. " '':'

functional macromolecular systems. ' ' .. .

In the following presentation,' we concede, for the purpose of.'. i"'';.

simplification, as a starting hypothesis (subject to later revision,

as seen later) the equiprobability of producing the chemical bonds

which are possible between reactive.sites both in time and space. On-

the other hand, we shall not.formulate a priori any hypothesis

assuming the exclusion of.any possibility of cycle. formation. We shall:.: !',

make this notion more specific as the discussion proceeds by referring{'..

both to experimental considerations'in the framework of chemical data.'.;:'-

'L " ' ', ,' '11" ;' ' ' ' ' '; '' '' ;';'"''''''''''' 'X' 



and theoretical considerations in the framework of the axiomatic

'theory of graphs.

The description of the' evolution of infinite 'random graphs has'. 

already been taken up from an essentially mathematical standpoint by :'

Erdos and Renyi [83]. Their application to a number of real processes ;

pertaining to the fields of physics, :chemistry, biology, industry, 

and telecommunications led Hammersly [84] to distinguish, on the one ·' 

hand, processes of diffusion, and, on the other hand, processes of

percolation, of which the telecommunication, contamination, and parti-' .,.

cularly the multifunctional. polymer gelification are special cases. ':

As a physical chemist, I propose to discuss the latter case for

finite multifunctional macromolecular systems. Such systems, made up... ;'·

of a finite and known number of elements, will exhibit' a known, finite:.'

maximum number of bonds which are chemically achievable by the con-..

summation of suitable pairs of suitable sites. The state of a system .. .,--.,

can then be described in terms of a quanitity p (rate of reaction

advancement) which, in the direction of evolution corresponding too·

synthesis Cpolymerization), will be equal to the ratio of the:number ; !?.:

of actual bonds to the number of possible bonds. This ratio, a date ',

in the evolution of the system, varies discretely between two extreme''.'.': 

values, zero and one, corresponding to two similarly extreme states: ,. ,.,·

a state I characterized by the lack of bonds (set of disjointed

monomers) and a state S characterized by the presence of a number of ';.

bonds 'equal to the maximum number of possible bonds. In the form 

d = 1 - p, it is the rate of development of the system in the 'inverse .,, .:''

sense from the preceding (rate 'of degradation).

To conceive of the most complete description possible, both from'' ".'

the topological and statistical standpoints, we shall assume that.the '.:

development takes place in both directions according to a succession

of semisteady equilibrium states. . ..

If, in view of certain hypotheses and constraints of experint..

origin, we assume-that the :phenomenon observed as a function of£ p ' '.: 

'12 ' 
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corresponds to the most probable' occurrence of the random" process,-%d;/ i

we can speak of the .stochastic de~scription of amphidromous systems'-i ;;.. ,

,[85] ... ": j . ,. :;. :' . : '
! 0 1 ! - - - : : ; ;1! :,
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' SECOND'PART ' : ; .. ;"

'TOPOLOGICAL 'DESCRIPTION ' '

Here we propose to examine the lattice structure of a multifunc'- :.":.

tional macromolecular system developing an an .random fashion. At

any moment in its development, we are interested solely in the proper-, ':.'-

ties which remain invariable in the course of the possible .structural. .~.

transformations, that is, only the topological properties. At first,

we shall consider an ideal lattice characterized by an almost total

lack of constraints, particularly those of spatial origin, and., conse-.:,'.',

quently, all of the steric conformations which are equally possible. '.'-. t-y 

Next, progressively, to conclude with a theoretical model of real '

systems, we shall introduce into the, ideal lattice a certain number....

of constraints derived from experimental considerations.' 

1. Schematic representation. ' ':

*, '. - . ?

Schematic representation of a macromolecular lattice-, and 

especially of a lattice in.a .gelified state, must refer to two differ-'

ent models, one of which may be- termed the theoretical'model and the ...

other, the chemical model.

1.1. Theoretical model'. It was first proposed by Flory 8]. 

We have represented the multifunctional units (f = 3) by points ".';:''^: '

(Figure 2a). The straight lines represent the molecule portions of:

a certain length made up of bifunct'ional units ("chains") and included.....

either between two "branching units." or between a branching unit. and : .'"

a bifunctional unit, one of whose extremities has not reacted. The

extremities of the "chains" are situated successively. on concentric- ..

,circles centered on the middle of an original "chain" selected'. arbi-:.::.:.'-

trarily. Every "chain" extremity, made up of one branching unit, .- '. ·

produced two more generally (f- 1) - new "chains" whose . :..:.;
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extremities in turn have the

..... -. t'. . . b. : same capability. Circles (Figure.'..:

2b) with their center at a
·' :.(· X ; - 'branching unit arbitrarily selec-t

ted as the origin and numbered

1 , 2, 3 etc., form the geometri-:.::,:i.
'

.
, .

, . .cal locus of the possible points ..
of departure of multiple genera-

/, .: .tions succeeding each other away '"''

/ ./- >)'. , |~ .:':' . from the origin.. The transforma-
: , \!v.:..,tion of the concentric circles' .I:..',- :.

-i,.I.. into parallel lines leads to the,: ,
- , c.. '. customary schematic represen-

.. tation (Figure 2c) of a process

.:l"'""l!:i

"

' ':! ; : " '.. j' " ".n a series [73], an important ',:;',

.'e I :'.,,.example of which is a family.tree...; .

· :This representation answers the

.:'.
"

,- .. ii':";'; tthe definition of a topological':'.: ...
..'-'"' tree-: between two points ofa -'a:-

.;.tree there existslone and only;". 'i:
: . 2 5 4 'one chain.

(c) 

Figure 2. Schematic representation' It should be noted that the-::.,.';'
of a topological tree. 

I'bifunctional units not repre- '
(a) Flory's theoretical macromole- sented here and not liable to

cular model [8].
(b) Model derived from (a). multiple descendance must be re- ..':
(c) Model derived from (b)., ': ,garded as simple generations

Process in a series or ' '' ,...
"family tree" type. a, se'e o which do not play a part in the -:.: ..,

continuity of the process,- except'..

to give, the "chains" variable .'' .'

'lengths without any structural '.
''' effects.

The schematic ,representation of macromolecules with a tree struc-.':-..

ture can consist of a set of points arranged at random,· representing "-.,..:

the multifunctional units, and curved lines indicating the possible. ..
conformations of the chains (Figure .3a, 3b). -::.'.''.
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(a) ;

4.-

m't 'o ni; . (°) (b) ( :c 

( .(b) .. ~ [[.:Figure 4. Schematic represen- .-.;:.
.. '': tations of two possible structure: :.-

Figure 3. Schematic represen- ' types for a multifunctional.
tations of two possible confor- . macromolecule without tree.. 
mations of a multifunctional " ' structure (chemical model). .';'
macromolecule with "tree"
structure. ' ' : ':'

1.2. 'Chemical model. This 'is the model generally adopted by .". '.'I'.'.

writers dealing with the structure.of multifunctional macromolecular ! . '
" '

compounds from a more.specifically practical standpoint. It shows :..

two views of different complexity (Figure 4a, 4b). In contrast"to

'the previous model, it is characterized by the fact that between two '"";.

points of-the lattice there may be more than one chain going from one..

to the other. Nevertheless, in view of this possibility, two types '.':

of structure may appear: 'either it is possible, by elastic deforma- ...
tion of the lattice, to give a representation in a plane.without the.' i; .....

two chains intersecting, except for, their multifunctional extremities-@.' . :

(a), or else such a representation is not possible (b).
- g ... , : : : -

To the extent that the synthesis of the lattice occurs' from

monomers immersed at random in a three-dimensional space, a structure :'.

of type (a) can be obtained only if the random 'generation conditions' :.

of the lattice include certain supplementary constraints. These

constraints requite.that a subset of monomers and their bonds be-.:' ' ..;-': .·

located on a surface homeomorphic 'with a plane which thus constitutes','.. .:'
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,a sheet molecule .(lamellar). If macromolecules of this type exist in '.';',: -

nature, it does not appear that synthesis would have succeeded in

bringing into play the constraints ;necessary to obtain them(l). Thus,,

in the absence of' special constraints and in view of our hypothesis ;

(which is most probable in the general case) of spatial equireactivity,'-'. 

we are led to consider structure (b) as most typical of the gelified:

state. ' '" "

2. Elements of the theory of graphs.

A comparative study of the. typical values of the preceding graphs'..

.on a rational basis is possible if we note that they belong strictly

to graphs according to the definition first given by D. Konig [86]. "'

The theory of graphs was applied very early to organic chemistry''.,.j?[

by G. Polya [871 and then by T. L. Hill [88], but appears to have be:en'.

taken up again only much later [89]., Quite recently, Van Wazer'and

his colleagues make use of it in th'e study of' !random exchange '. , ,''z,?.!

reactions for radicals 'in mineral and organic macromolecular .

compounds [90].

From a chemical standpoint, a polymer must be regardedas a set..!;'

of monomers endowed with chemical reactivity, among which chemical "': '

reaction R creates a correspondence which is manifested as the occur- ..

rence of bonds whose number depends on the rate of advancement of the'

reaction.· For a given rate of advancement, a polymer is thus comparable"

to a set M of monomers and a set A-of bonds involving a set of' pairs

of M. The chemical reaction R produces a partition of the set of 

monomer molecules.' The latter is formed of disjointed sets of monomers.'

connected to one another,. which comprise the molecules of the polymer..

From an axiomatic point of view [91], we shall say that the' :

chemical reaction is a mapping of M`'on M.. However, starting with:: l :'i

(1)M. L. Huggins has. synthes'ized macromolecular compounds with:'
foliated structure [118].

"* .. . . . . . . .. . ...... . . ::[,....... :; ,. -';.,. .... .. . .



: I. - . . - . . . . , , t .. . .

-- a set M, . ... .

- a mapping:R of M on M, ' 

we have a graph G '= (M, R) made up of the set M and mapping R. The i.- ' '

mapping R will be!manifested on the graph by a set A of continuous -.

lines joining pairs of points (mi, mj) such.that: "I .- M"- ' :" 

The points or vertices mi, elements of M, represent the monomers . ' .:

The set of continuous lines completely determines the mapping of the.' ... '-

graph just as mapping R determines set A. Therefore, we can write:..';".

.the graph either in the form G = (M,.R)'or G = (M, A).

A bond, once established between two monomers by means of the

reactive sites which they bear, makes these two sites. correspond on .'

a one-to-one basis. If two sites are always connected by two lines ':'?''..

in opposite directions,-the graph is symmetrical. For simplicity., wei" : ..:-.

can connect the two vertices by a continuous line with no direction .: : 

indicated, designated as.a "cross-link".
,. . i·.

'

,. :,/'.: -.. : ', 

2.1. Terminology. The terminology of graph theory, created, by:'.;. '..

mathematicians [91], is quite' closely related to that used customarily .'.'';

in macromolecular chemistry. Thus, 'we propose to adopt the terminology .'..'

of graph theory, both for generalization and for precision, to be

supplemented where necessary by' terms of chemical origin to the extent .- :

that these terms will fill a void in current mathematical language for-

the physical chemist. ... .. :

1. Thus, the' 'degree of a vertex mi is the number of'cross-links ~"*'.'.l.

with one extremity at m i
, and the other different from mi.'

We shall' generalize this definition and use the' 'functionality :;

f of a vertex mi for the number of sites it contains, each vertex :'-':':.

being given- in advance as the collection of a certain.number f of- :.

sites. The extremities of every cross-linic occupy two sites (ulti'-' '.:"

mately belonging to the same vertex)' and one site capable of ' -'

receiving only one cross-link. ' .. 
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Functionality is the maximum.degree a vertex may have. It is ''i '::::

generally determined in advance. For a monomer, it is the number of.:

functional groupings it possesses which can react under physico- ' . '1'·:.

chemical reaction conditions.

Node refers to any vertex having a degree equal to or greater.

than three, and antinode refers to'any other vertex. We shall use a ':?..

rather different definition, using node for any vertex with a function- .'

ality equal to or greater than three, and antinode 'for any vertex with ::

a functionality equal to two. It follows that, in view of the evolv- ,~:,:.

ing character of the graphs envisaged, any node or antinode with a

degree lower than its functionality may be regarded as a pre-node-or :.''..:;.-i;

a pre-ant'inode, respectively., because of its capability of becoming- a;' ..

node or an antinode in a graph in the sense of graph theory [91]. :--

2. A chain is a sequence of cross-links, each cross-link:
' '

attached to the preceding cross-link by one extremity and the -. . '.-

succeeding cross-link by the other extremity..

A linear chain will refer to a chain for which all vertices are .";?'..'

antinodes, and a ramified chain will refer to a-chain, .part or all ;':: "
;

" :
' ..

of which is made up of nodes.'. .

A branch will indicate a linear chain for which only-the ' "

extremities belong to nodes.

3. A vertex is called' te'rminal when it has only one incident ... ;'I.:.

cross-link. We shall say that a cross-link or a linear chain or a. :'.. �: ·

branch is terminal when it ends in' a terminal antinode. 

By extension, a cross-link or: a linear chain whose two extremities.:.',

are antinodes will be called 'fl'oat'ing. -.:'

An 'i'solated vertex is one with no incident cross-link..

4. A cy'cle 'is a finite chain'",beginning from one vertex and .:. -

finishing at the rsame vertex., It'is called' el'eme'nt'ary if all the '

vertices are different............................. ...... 
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The length of a chain is the number of cross-links in the

sequence. A cycle of unit length, made up of a' single vertex and 'a

single cross-link, is aloop.

5. A graph is' connected if, for every distinct pair of vertices,

there is a chain going .from one to..'the other.

A subgraph o'f G = (M, R) is by definition a graph'with the

formula G = (N, RA) such that:

N C M, and!l Itn = ' N N ", V. .

A subgraph (M, AN) will be made up of a set of vertices ' 

and a set of cross-links of AN Joining two vertices of N.

A partial graph of G ='(M, R)(;is by definition a graph G = (M, RP

such that::. ::

-np of a' l .i 'n1 :, an:, .

A partial graph (M, Ap) will be made:up of all vertices M, and all

cross-links of a set Apc. ..

A partial' subgraph is a partial graph of a subgraph.

A 'co'nnecte'd 'comp'onent (or component) of a graph is a connected

subgraph of the graph. It follows that:

- the different connected components of a graph G = (M, A)

constitute a partition of M.- There is a close correlation between?.the.. . .::

terms components of the','graph: and mole'c'ul'es .of the macromolecular ... '

sys't'em:,' '

- a graph is connected if, andid only if, it has only one. ,.,',,

component . i . :?( ,

.. ..... . . ;·: ...... ......... ~ "' ............... ,.*. ..... .... :- . ., * ....: ...... ..... :.... '. · .* .~~~~~~~~~~:.'.';,.,20,, ,,,,,,,,,,,,................



A multigraph G = (M, A) is a'graph for which there' may by several, .'

distinct cross-links Joining the same pair of vertices.

A graph or a multigraph G is planar if it is possible to repre-

sent it on a plane in such a way that the vertices are distinct points,

and two branches meet nowhere but at their extremities. The represen-.- ,.

tation of G in a plane, in conformity with the conditions required, is ":..i:

called a 'topological 'planar graph. Two topological planar graphs'

which can be made to coincide by elastic deformation of the plane are

regarded as identical.

Generally, any graph G can be represented in three-dimensional .':"-;':.

space with no two branches intersecting. Such a representation is

called a topological graph. If S designates a surface of three- ...

dimensional space, and if there is biunique and bicontinuous mapping;.;''.::ri::.',

a of G on S, we know that two cross-links of oG will not intersect..; :. .;:

aG by definition is an S-topological graph. If S is a plane, we

again encounter the concept of a topological planar graph.

It follows from the general theorems [92] that any finite. graph.',::.:.

can be represented on an orientable surface S of type g (homeomorphic. '.'

with a surface delimiting a volume pierced by g holes), where g is

sufficiently large.. If g is zero'(case of a sphere) we return to a.- ', : .

topological planar graph for a finite graph G. ' .

The representation of a topological graph S by projection on a ::'.:;,·'!:,

plane will cause the cross-links tointersect. These must notlbe .':.:'.:'.:

confused with the nodes, which should be denoted in an appropriate.'::.::

manner (Figure 4b)'

In the field of elastic defortion corresponding to te states

of maximum coiling and complete extension of macromolecular chains.,' ' ;..'

the different conformations of a polymer will constitute a topological''-'',:?: .-

graph.
.,' . - * , ,2 '.', '. ' ' ,, . ' ,!...

2.2. Basic' theorems.' Let us consider a multigraph G with m. /:i;i:.::.:'

vertices, a cross-links, and c connected. components. Let us set:'.-.;-":

'21 ' " ''' ' ' 2'1''' - " ."' '''r



a.· .. . I , :. ;. -,- , , ,

By definition, v is the cyclomatic'number of multigraph G. It 'is the.,

w. . ' .':" .:.....
. . .

. . ....... .. ' .

By definition, v is the cyclomaticgraphnumber of multigraph G. It.is th(a 1

Betti numbe r f orm the dimensig onf the variety con sidered,for 
a graph.

Ir, . . . .: - . :,, . .

p is. of G with a new cocyclomatic number.ink:

1. If and s do not belong to the same vertex, or if (when 

Formula (5) is and s belong to two distinctvertics) thesetwoEuler-Potices are notn [9

connected by a chain is notG, wehave onnected. 

2. In the opposite case, we have:

Corollary. We find: 'P O,c >i, v :>OP

i· , o. .

Theorem II. The cyclomatic number v of a multigraph is equwith (a +:'

the1.number of linearly independent b elementary cycles i

.This means that v is alsothe doppoimension of a cycle base, thave:

: "' 'C~ '::, '" ' " '' . . "' ,'::'

to say, the dimension of a'vector subspace produced by the:cycles,.''. ::

2 22 '



so' that every other elementary. cycle depends on it linearly E94]J. It 

follows that a set of cycles will be made up of independent elementary ...:''

cycles if each of .them contains a cross-link not contained -by the' .

others.

Corollary I. A graph has no cycles if, and only if, v '= .:0 ;., :-. .

Corollary II. A graph may have.a cycle if, and only if,: - -1.i:'I '.

3. Evolving ,random graphs.- 

The concept of an evolving graph proceeds directly from the

evolving chemical nature of the macromolecular systems considered I

here. The evolution of these finite systems occurs within a field, .

which is itself well-defined. In fact, if we may say generally that .i::

the number m of elements in set M of the monomers is invariable in

time, i.e., in the course of a chemical reaction, there is no loss of , :.

monomers from the reaction medium -,. either through evaporation, sub-.- .

limation, distillation, or through.isecondary chemical transformation. '.

On the other hand, the number a of bonds varies in the course of time,:..

in a fashion directly proportional to .the rate of evolution values,'

between zero and one. .

At every moment of evolution, in the sense that we shall adopt ;,::

henceforth and which will be that of the polymer synthesis, the graph .:..."

of the system is a partial graph G = (M, R ) of graph G = (M, Rl) of :: ..

the system in its saturated state S corresponding to the limit of its; :...,"

evolution (p = 1). -

The chemical evolution of the system may thus be described by a .."':

succession of partial graphs G = (M, R.) corresponding .'to the. set :of.'.

discretely increasing values of p such_'that: p .. Graph'....

G = [M, R(p)] will be termed evolving. .

Given the' random 'nature of thermapping (R(p), the system can .:....-

be represented by any one of.the graphs of class; ,e including the set :.;i::

of graphs whose characteristic numbers v, a, m and c satisfy the' :-:: ":'

23 .. ' ;.' -23'. .' ;,:: ; :..b~~~~~~~~~~~~~~~~~~~~~~~~~·
" ~ ~~~~~~2 , · 'i ' 



'. '· . ; .

Euler-Poincare relation, in which m' is given in advance, and.,a depends, .:

on the moment of evolution considered. It follows'that, if the ·values':.. '

of v or of c can be determined, it'·will be possible to know at.least '. 

one certain aspect of its structure.

We can say that the graphs are statistically identical if their .

characteristic numbers are equal. Under these conditions, -class 

of these graphs can be represented conventionally by producing one of :.-''

them which will be designated the statistical graph or average -graph.'.';'

structure of the graph of an

evolving random macromolecular

- Zf>ca_ (-< ·>Zs:.' '. system can be reduced conveniently'.

;* , zX m /t \\s\;j 1 ; in the first approximation to a

:K. Sr!· J )'study of class S of statistical'.

,/ I22 \ {, evolving graphs whose character-.
istic numbers at any. moment.

; /nII' , .satisfy the Euler-Poincard relation,

* )\e ) t '· t; ~in which m is given' in advance'.

} Real graph G . a, .' . ..;::

eal gp G ::3.1. Graph of:an ideal
.system.

t;· Sng L:\C· .X-3.1.1. Definitions. Let u

* \7 W .S>~ .;";recall that by ideal system we ''. 

mean any system in which actual .: .'

*of thee gr- aps ' cabonds between two functional

groupings are subject to no topo-' '.

Supr ga - ! ', logical or metrical'constraint.

Figure 5. Support graph Vertice . We assume, " 'a, 
associated with real graph a s.

. the following, that there are no "

, . . .. . . . . . .. . . . .<. . . . . . ...
vertices with only asingle site.

(2)The gaps in g@raph " correspond statistically to nonrealized or' ''' '

nonrealizable.,cross-links in graph G at a date p in its
.evolution. : 
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The functionality'of the vertices will be either equal to, or greater .....

than, two. The number of vertices with functionality 'f will. be desig-., ::

nated by my, and the average functionality of all vertices of the

graph - by f.

Cross-links. Eve'ry cross-link.occupies two arbitrary sites..

We assume for convenience that the 'number of sites is even.::' The:maxi-' .~

mum number a1 of cross-links which the graph can support at saturation ' :.

will be equal to the number of pairs of sites.

If a graph G = (M, A ) has a cross-links, we say that it has :'. ::

(al - a) pre-cross-links which can become cross-links in a later 

realization of the graph. 

Support graph. We shall use the support graph to indicate a graph

E = (M, A') from which any graph G = (M, Ap) can be obtained by the.. · -

suitable suppression of cross-links (Figure 5). For an ideal system,' ;-

it is identical with the saturated graph G = (M, A1). ,, ,;

Rate of evolution. This is expressed as:
:,," , ., , :

a 2a :

. ~~~'-SE ¢ ".''(6) 

Its different values are whole multiples of the discrete

quantity: 2f1il 

3,1,2, , '.(: ' .:
3.1.2. Structural state equation. The structural state of a

system will be assumed sufficiently known if - when the number of ,,
vertices and their functionality are. given in advance - the charac-:' ,'t '..,

teristic numbers of the average graph which satisfy Formula,(5) are . ,.

known. By expressing the number of cross-links as'a function of the :'::'

rate of evolution, (5) yields the. structural state equation:of 'the. :

evolving graph: .. . '

:I l .t :

25*(; E
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This relationship has a linear form. It represents a plane 7 in

three-dimensional space with reference axes (0;,Oc, 01). This plane is.

parallel to the bisector of angle (,o, Oc). The limits of variation of '

parameters v, c, p determine a field in this plane inside which any.: :i:

point represents the state of the graph (Figure 6)

i .. r :'':

' 3.1.3. Structural state :.

, .... :'''- .: domain. It depends generally on 

*A.L,, .:/ .': a certain number of constraints ,
* /A / ./; inherent in the system, which have -

' .' to do with the conditions under1:2L~' *_______ . .'...,which the cross-links are produced.:::.,:
1i ',--/- -I-|t ]": "','. In the case of an ideal system,

·lr ^ _J ,, ,-, -/~ir .,.:the only constraint to be consi-:'

: I?2__ :/ | \ Il .' !i:, Odered is that of the distribution,:,'

-. I '" \ ' 1 -1, ./', -,' .l':-, of a well-defined number of sites.,,..,

I/ ..r. . 9 f at each of the vertices.

,I /i__". ' ,, ; 3.1.3.1. Constraints .

-inherent in the system.. It deter,-.,:
- -

.-

mines a polygonal contour whose

.Figure 6. Structural state vertices have the following coor-t., 
domain of a multifunctional, dinates:
ideal graph.

.. '.. ' .' .. ., .

C0 ~ ~~ . ..,.. ·. . .. 

C >) , < ; * - ;, - :- -r2 . * :- 7
_= .0 -i

3)For convenience' in reading, the scale along '; has been multiplied-'
by an arbitrary factor. 
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F designates the functionality of a node.

If the vertices all have even, functionality:

r f: , , , - r

-: -:?;(9

The contour of the corresponding domain is: A'B'CD.

If a portion or all of the vertices.has an odd functionality fi,:0..

the maximum value of v is: ....

The contour of the corresponding domain is: A'B'CHS.

3.1.3.2. Supplementary cyclization constraint. Here we shall i .:1.;-I

introduce a supplementary constraint which, in connection with the

study of real system, has a certain .experimental justification. We,; '-.,;.

assume that: no cycle, even one reduced to a loop, composed eOXccl:dT'-"''?".'.:;'

sively of antinodes', may exist. Under these conditions, the maximum

value of v is: ,, .

- : 2 II

The contour is then AI'B,'CNR. It. is restrained with .respect,:to the

preceding ones.

3..11. Reduced state equations. A comparison of evolving graphs'-.....

of arbitrary size but with the same average functionality f (average'.-....:,'

isofunctional graphs) is possible using several reduced state 'equa--;:-,'.,-:,

tions obtained from the state Equation (7), if we define a: .certain;!.,',:

number of average quantities., ; ' 
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1. Relation (7) can be written in the. form:' : ; " '

eS. -' . .ce 1,'

D,,(1., 

.DP . 3)PGm 2. 

Ai1;- lc is the ratio of the vertex number (or points) of the graph 0

to the number of its components.. We shall refer to it as the average..

degree of punctuation. In a similar fashion, T)FC :'1,,I will be

termed the average degree of cyclomatic punctuation. Obviously, this

is meaningless, unless v is other, than zero. If v = 0, we have

Carothers classical relationship [1] which in macromolecular chemistry.

relates the numerical average degree of polymerization to the rate. of

advancement of the polymerization in the case of macromolecular systems""

without cycles., Let us note that, 513- cannot be infinite in: the mathe-

matical sense of the term, but at the most equal to

If p = 2/f, then v = c. The system contains at least one cycl:e,'

s meani. I _ = .... :

if it has only one macromolecular' component.

. (- .. : :' : :: 

2ito- . Reltiosnhi (7)

.

can be itte in them fr

2,~~~~~~: ) -(15). .,f,;-

m-aC-=9 is the ratio of the number of linearly independent cycles-o.'

the graph to the number of its components. We shall term it the- '

average degree of cyclization (or' cyclomatic degree). .

The following theorem follow's from that relationship: .... .
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Theorem III. Let there by an; evolving multifunctional graph:: ...

whose average functionality of the .vertices is f and the rate of :. :

evolution p: . -- ,

If l< : the graph may not have linearly independent cycles. 

2 . .. - : E.

2
If --- : the graph is necessarily cyclical, and has a cycle...

if it is connected. If it is not connected, and if it contains c : 

components, it will have v = c. linearly independent cycles. 

If p< : the graph must necessarily have a cycle base.. :.

Relationship (7) may also bel written in the form:
i, ,, 0 stld - X,5 . , f.f' 0t0F~o',ws .,

l.. .... .· -..

- ; I v·C ; _.·· 0 .. . ; (16) .
,: . - . .'-.l .-' ·

or: : ;

_c _ _ .. - .. : ":"

which would enable us to define TL - >a(/c-arc as the average degree

of bonding (or ligamatic degree). Let us note that iT.L and .l)3iV are..

r of graphs of a multifunctional macromolecular system defined by-,

the number and functionality of the different vertices, whose : '
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T1, T2··· It is possible to~ '

arrange by type, in one and only

one way, the components of a graph ""i~"

, gC Such an "arrangement" i' s i
'
:

' ;"

. ,. called a complex.

. I /' 1 

f

'

. -We shall use the term linear'

..* .'.icomplex of g to designate the re-. ,

';) ,'striction of the complex to the,:
.:set of types corresponding to the'., ,' .

..-I ' .. .. ,cycleless components (or linear

r.->', ' 9 S g,0tcomponents: trees, floating linear' :',':

''j /chains, isolated vertices). In a', 

'. /1 ',similar manner, we.shall 'call a .:'

-69 _____.:_____ _ i* tcyclomatic complex of g, 'the re- ..... (i-';, " .' .striction of the complex to the

;III~ . ; ;>-:' ,'' i set of types corresponding to

,cyclic components. . .' ''

(a) ] (b) The set of complexes of graphs:: '.:'
-' ,of a class .,E; of statistical graphs,'.':

Figure 7. Example of isocyclo- .i:
evolutive complexes of a graph. for which, in addition to the : ';.:'
G = (M, Rp ) (p andv constants : :functionality and the number of:'" :

Gtc -- cte . ':. 1 .vertices, the rate of evolution-,.:: '...
(a) Cyclomatic complexes, non- ; and the cyclomatic number are' '':.' "

planar (1, 2, 4),
planar (13)* 2,.4), i 'given, will constitute a set of planar (3) . :;~,.

(b) Line complexes. . .. ' isocyclo-evolving 'complexes

(Figure 7). Let us note that, in r,! "i 
the case where class ;& is reduced :,':.i;l

to a connected graph whose set M of vertices is small, we return to" :'.;'

the classical concepts in general chemistry of isomerism, tautomerism '.

(set of desmotropi 'forms),'mesomerism [95] or resonance [96],- .
depending on whether we consider these complexes successively or more.: (:'

or less simultaneously. ' " '

30 --, / -'. , . i .

' 'J;'30'; '- 0 ;' ''''f'''"""



The ensemble of complexes of graphs in different classes ~ of

statistical graphs constitutes an. ensemble of cyclo-isoevolutive .-;-.: ,'? "

complexes (Figure 8) for which the cyclomatic number takes. on all !, ..· ' i:

permissible values which satisfy the equation of the structural

state, for a fixed rate of growth.,

At a given point p of growth', these two ensembles of complexe's

constitute the amount of various 'chain-cycle equilibrium statesof .. '': .;

which are topologically possible,, which introduces'the important :q[.'.

concept of trans-reaction.

3.3. 'Graph' of a Real' System',n'

3.3.1. Additional Constraints. Compared with an ideal system,/ e ' .

a real system can present and does' present, in general, a certain 

number of additional constraints.', Here we will only consider those'.! ' '..

which 'influence the nature of the points.

If bonds can be established,: as in the case of an ideal- system,-.i :iii':

between two arbitrary points which, from the point of view of the

establishment of bonds can be considered identical, we say that the: '''.l.:'

system is homogamic.' If, on the other hand, bonds :cannot be estab-. :'.'?

lished exclusively between well determined pairs of points,.:then

only those bonds -can appear which'are specific to the nature of the':" i:'.:'

points from which they emanate.'· . .'..

Chemistry and even biology have numerous and important examples . ..;'." .

of such bonds. The specific characteristic is that there are :

systems which''have points which, of necessity, belong to species ' .]?i::"";':

which can be differentiated. Such 'systems will be called hetero-

gamic.

3.3.2. ' Cy'c'l'i'sati'oon 'Cons'tsr'aint. Experimenta'l Just-ificatidon.:. '

This constraint is introduced for.convenience 'in the study of a ''no .....

real system and can be Justified to an acceptable degree' of'approxi-.)i;''
:
'

mation in the study of the chemistry of real systems'. In efect,.

whereas in chemistry there are examples' of cyclical molecules',: which'
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. · :.·: .:, ....f -

....... ' .only consist of bifunctional

. /~ :monomers, the number of repetition

; modes which participate in the

oD , .cyclical structure is always,

-small and the number of these,

'oligomers is small in general in 

the system. Thus, for example, . .

'____________ ' ' the number of repetition modes

".--I -is on the order of 3, 5 or 6 for: '::':

cyclo-oligohexamethylenediamines ..''/i
[ 97]. There are 1, 2 or 4 such 

repetitions for mono- and bi-...
.~

.... "·· ·j ::~ ~cycloadipate of hexamethylenedia-. 

mine [98] [99]. It has been

..possible to isolate cyclical :

dimers, trimers and tetramers of..i
!
-::

tc-caprolactame [1001, cyclical
Figure 8. Example of cyclomatic., monomers and dimers of adipate of'..":':-

cyclo-isoevolutive complexes d, decamethylenediamine [I101]. I't:of a graph G (M, R) (p
= constant .v~--c~ constant ).t . has also been possible to isolate

cyclic trimers from polyterephtha-,,"

late of glycol [102] or of the.
..polysiloxanes [1031]. The existence of such oligomers conforms to the :
conditions of minimal internal stress of the cycle [102] or conditions.'
of maximum stabilization of the structure by hydrogen bonds [100]'.'I:.:'i.

The proportion of these cyclical oligomers,- which seems to depend on. 
.

temperature, is generally small: '.it is on the order of 1.part per'-:", ':i!:1 "
100 [102] to 6 parts !per '-100 [1'04] '-with 'respect-to weight.

--- ---- ---. r. __.u~t~f
·:;I; '/'i' "' ; : '?'

T... The -totality- of -thse bexpseipm efitr 1-da-a t amakes it possible to
make our hypothesis of non-cyclisation-of linear chains legitimate. "''"--

On the other hand, we admit that there is a possibility of cycliza-....''::_

tion of branched chains, no matter what the number of nodesi..,: ::: -S.

The theoretical expression for this constraint in terms of . :.':..
the theory of graphs simply amounts to the 'statement that. the -

supporting graph ., associated with 'the real graph, is connected.-:::i:'f:.:.:

32'~~~~~~~~~~~~~~~~~~~~~~~~~~~· i !....
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3.3.3. Homogami'c' Graph. This is a graph of a macromolecular

system for which the reacting points are free radical extremities,.::.

for example. For this reason, we will include in this category
systems whose reactive functions are ethylene functions, or acety-
lene functions, by assimilating an ethylene function at a pair

of reactive points. This gives a 'functionality equal to two to the ':.
monomer which supports it. In reality, the functionality will be ':

a constraint which is inherent to the real system under consideration.':'

Thus, an ethylene function will b'e bifunctional in the general case

of vinyl derivatives. However, in.certain cases, it must be con-

sidered as monofunctional ("dimerisation" of fatty ethylene acids.)., .·.?

There is also the possibility that two double conjugate bonds must'.

be considered as a bifunctional ensemble (a Diels and Alder type

reaction)., 

This is the commonly used approach, but one should also con- -
sider the evolution of the system from the viewpoint of evolution of :

the ensemble of cyclomatic complexes of its multigraph. A double .

ethylene bond is considered as acycle of_the_graph..

If we adopt the first point:of view, the representation of a

real graph at a certain point p of evolution will be obtained from

the 'supporting graph E by suppressing a suitable number of cross-links,
corresponding to the number of prior-cross--links. A branch 'of the 

real graph (strictly speaking, a pre-branch)' wilI consist of a branch ;':!
from the supporting graph containing all the realizations correspond-'.

ing to the pair of nodal points, to' the anti-nodes, to the cross-

links and the 'prior cross-links of this branch. Let B be a:branch

having k possible cross-links (k - 1 anti-nodes) and i pre-cross-links:.';

We will say that this branch is of order i and has a ligamic number k.

3.3.4. ':Heterogamic Graph. 'In"the following, heterogamic syst'ems,!'
"
. :

"
'

which we will examine, will consist of points.which 'only belong to .
two distinct types'. We will consider systems in the polyester class':.':, '

and in the polyamide'class, etc.,, and we will exclude their cop:oly-,' ,' ' 
condensates. ' -.-. , .. . ... ; -
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Let NA and NB, respectively, be the number of points in space,

A and B." We set: , ,

When the stoichiometric ratio_r is different from one, the supporting

graph . consists of a certain number of cross-links which occupy. '-

identical pairs.of points which belong to the major portion of space,,

and cannot be-realized "in the -real graph. We will call the'm anti-'. ::

cross-links. .. . :,

Let PA and pB' respectively, be the proportion of points 'A and :

B which are involved in an intersection-of the real graph. We ' '

always have:· ; .. - ,, , .:

NA- - , ' ,

where: - -.

:' pA_=i'A,; -.. (19) ..

The number of cross-links .of the:real graph can only be at the most. '.

equal to the number of points which belong to the lminor portion 'of,' .

rspace. The rate of evolution is expressed by: ... '

PA if. r <
P1 if. r>1.

By generalized rate''of evolution p,we mean the number of

completed bonds to the number of bonds which can and cannot be

realized. For the graph X, this is the ratio of the number of

achieved cross-links to the total number of cross-links (cross-links,.:

pre-cross-links, anti-cross-links), or the conversion rate of these. '·

,pre-cross-links into cross-links, no matter what.their type and .·

taken with 'respect to.all of these 'cross-links'. We immediately find:.

* .' -, ........... .' . ... ,: , ':

-,. .... '-:l u-;7 -= , ( (20), , .
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The representation of. a real 'graph at a certain' point p in its '

evolution is obtained from the supporting graph . by suppressing the -:...

pre-cross-links and the anti-cross-links in a convenient way and. in'::',:,

a random fashion.

The notion of generalized rate of evolution can remain com- :

pletely general according to theorem III. ....

Let B be a branch having: k cross-links which are possible ·

and not possible (k - 1 anti-nodes, i pre-cross-links and J anti-

cross-links). We say that this branch with-ligamic number k is of '

order i and of anti-order j.

Even though we have already considered the parity of the point' :.,'

distribution with respect to the nodes, we must add the constraint ..'....: 

regarding the' nature of the point distribution in this case. It may'.,.'-:

be taken into account in a convenient fashion by first examining it ..

at the level of the anti-nodes. !-This leads to consideration of the' 

following two cases: 

3.3.4.1. . Pseudo-Het'e'ro'gamic' Graphs. For these' graphs', the ' --':

anti-nodes contain two points 'of different kinds: a point A:and.a

point B.. '.,:

It follows that if the Istoichiometric ratio is different from.' :''::'-

one, the branches of the supporting graph E'can only either be .of ,.

anti-order zero, or anti-order one.

If the stoichiometric ratio is such that all the branches:have ;; .'

anti-order one, the graph consists of an ensemble of branched

components which'all 'have one node. Polymers in the polyamide

class have a network of this type. ("star") and have already been': ,: .'

examined [56].. .

3.3.4.2..' True' Het'e'rogami'c' 'Graphs'. For these graphs,: the anti,-;.!

nodes have two points which belong to the same space A or B'., The--.:. .. ...

anti-nodes A and the anti-nodes B'can exist in any proportion -. :',

..... .35.



Three different types of branches. must be considered, depending

on the type of nodal points: branches' of type AA, AB or BB. .'::':

Branches of the type AB are different from branches having identical;i.'': .

extremities due to the parity of the number of anti-nodes which they ',;. ''.

can have in their saturated form.'.When the stoichiometric ratio is .

different from one, it is convenient for the study of the: supporting i:.'..

graph to add to the system anti-nodes belonging to the minor portion' of.'.-

space, in a number which will satisfy the stoichiometry. These' 

anti-nodes, which cannot be distinguished from the real anti-nodes

of the system from the point of view of the random generation of the,',-

graph, but, nevertheless, measurable by an appropriate procedure

will be called fictitious.

The supporting graph of this new syst'em will be called ficti-':

cious supporting graph E'. A cross-link established between a real '

point and a ficticious point will be called fictitious. By suppressing,'.:-

fictitious anti-nodes and pairs of, fictitious cross-links from the :..,.;,.: '

ensemble of the branches of the graph Z',. the same number of anti- 

cross-links will be generated. In"this way the supporting graph ,:
of the real graph will be constructed whose branches can be o'f any .. '-,:,.,:.' "''

arbitrary anti-order, in contrast to the pseudo-heterogamic graphs..', 

It follows from the preceding that we have been able to take' ;...

into account the constraint .regarding the distribution of/.:the nature ,..,''':','

of the points, both for he.anti-nodes, as well as for'the nodes.: ,- .

4. Axiomatic Definitions. : -:.. ' :-: .' -'.? ::'

4.1. 'Inte'rmolec'ular and ITnt'ramolec'ula'r Bonds. Bonds existing.. 

within a chemical system will be called intermolecular or int'ra- 

molecular if the cross-links of its'evolution graph-have properties' ' '". '. '

1 and 2.of theorem I, respectively, .'

Stated differently, the creation of an intermolecular bond ... :.:.:. ::..:

brings with it a ,reduction equal to the unitof the number of

molecules of the system. However,, the realization of an intra-':':: .... ?.,: .

molecular bond keeps the number of molecules. constant, but,' ipso facto', `

6 . i...
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brings about a cycle which is linearly independent. This propositions; .'"

is also true in the opposite sens'e'.when considering the evolution ...'.::

in the direction! of degradation.::

It follows from this definition that the intermolecular or '.:.' ..' 

intramolecular character is not necessarily an inherent property of'.. '":;: :

the bond. It depends on a certain topological context.

Thus, a priori, all bonds which 'participate in the base of a:

cycle can be considered as intramolecular. However, we knowithatl .::'.';':

there exists only a certain number v, the suppression of which will'.:' :

make the components connected and without cycles. From this, it

follows that all remaining bonds are 'intermolecular bonds.

On the other hand, we can say,- a priori- and for- ?.g iven :;..::i':''
:

topological configuration, that all bonds which: 'do not participate ;:..:-:;: .
in a cycle base are intermolecular.

: .f . .,. [ , ;.- : .

We 'should note that this definition, which has a topological' '

origin, does not, take into account the nature of the !bonds which;,
in reality, can be differentiated according to their free energy of '. '

activation. Any definition, based primarily on the nature of the''

bond, and no matter how convenient it is in certain simple cases, .::'..- "

will be no more arbitrary from the topological point of view and, ' 

therefore, could lead to misunderstandings.

4.2.. ''Gel'i'fi'cat'ion. By gelification of a multifunctional .

macromolecular system, we mean the passage from a nongelified state:":'"':".

to a gelified state.'. . . .

The' term degelification can designate: the opposite process,'. . ...:. !.'-.

No matter what the evolution direction, we' will adapt the term

critical transition. .. 

The physical, physico-chemical and mechanical properties of::''.:" .. '.:..'
.multifunctional macromolecular systems, in'either one of these two'''"

states',' are sufficiently different to suggest that they depend' ...:'"...
sta3. . ...... , .. 
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directly on the nature of the net'.. If we only examine the most- '.

representative properties: fusibility, viscosity, solubility,. ' ,.'

expansion, which are intimately 'connected to the relative mobility,?'.:''..'I:,

or the individual nature of the molecules, we can express the .

structural state of the net corresponding to the nongelified and

gelified state in terms of the theory of graphs.

4.3. Nonlgel'i'fied' State. We define it as the structural state'.-.'

of a macromolecular system whose corresponding graph is planar.

This definition, with which i't.'is possible to represent a real,"'

finite system in a plane (nonclosed surface or closed surface on a ' :
'

sphere with'infinite radius), without intersection of any two cross-. : '.' .

links, implies that the components: of the real system in a three-, 

dimensional space can be considered completely separately from the.i(:'., -:- '

point of view of its physical and''chemical properties'. This.holds:at',''

a minimal fusion temperature, at a relatively low viscosity and .:;.':.:'..i'':

maximum solubility, or even total"'solubility in an appropriate .

solvent.

It should be noted that this definition does'not prejudge the

value of the cyclomatic number of the graph which cannot be zero as ..-'

certain experimental results show. Thus, cyclical molecules can' le'I ;

soluble,- since 'it is possible to extract them with solvents (see. :. ''[: 5
§ 3.3.2). On the other hand, thenongelified state is not incompati-,!{. i

ble with cycles,.as the example of dialyl orthophthalate shows

[35-42].). ' ' " ' {:'::

4.4· Gel'ifiled' State. We define it as the structural state of" ';" i' '

a macromolecular system whose corresponding graph is nonplanar, i.e.,/ V

S-topological, provided that the order of S is sufficiently high.

This definition of necessity implies that the cyclomatic number: ',"~'.

of the graph be' n-onzero. On the other hand, it' makes no hypothesis -,.,:.,'

regarding the connected property off the graph.' It results that the'-.:,'.

ensemble of random graph 'components: can be partitioned into the'.?',,,:].'

following subgroups: .

] i -; ;:. , - d,, ;, \
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- the subgroup of planar components 'corresponding to the ' ''

soluble fraction' (base 'fraction); '-'

- the 'subgroup of nonplanar components corresponding to the :.:,

insoluble fraction (gel fraction). 

For the' latter subgroup, the structural state is such that the ',:'..:;
:

.

cyclical chains 'are no longer separate and that they.are more or

less branched. In a solvent, for example, their limited separation .'., 'j,

is translated into a swelling, which itself is progressively limited.' ;.'.

the more compact the net is i..e ., the larger is the

cyclomatic number for the same number of corners, either due to a

higher rate of evolution, or because there exist a larger number of

nodes having a higher functionality in.the center.of the system. .

The concepts! of subgroups of planar and nonplanar components' .

is naturally related to linear and cyclomatic complexesdefined above.-:; :._

Nevertheless, they do not replace the former because the soluble .

fraction can contain cyclic' molecules (planar).

In general terms,- it can be' said that :the graph 'corresponding 

to the' gel fraction-consists of subgraphs', which are nonplanar and

have cyclomatic complexes'. Its cy'clomatic number v' will, in general,·.

be' different 'from the cyclomatic number v of the graph of the system'. .

The number of its-components will depend to the first approximation. 

on the growth mode of the polymer: either in mass or in solution.

It can be assumed that with' respect to mass, the number of the

molecules of the' gel' fraction will be limited eventually to a single.?-':.:.-..

macromolecule '(macrogel). In solution, this number can be' much ,';, .

larger (microgel [105]). Here, the macromolecules of the gel , ,.

cannot consist of a single component, but possibly of several com-

ponents connected to a single molecule by' topological and:non,- 

planar bonds of the' trans-cyclical type (Figure 7 (1) (2) (4) and'

Figure 8). Even though this type of bond, which was suggested in 

the study of polysiloxanes [106] and' polychlorines of phosphonitrile, . i
.

}.L

[107], appear more' frequently in the 'case of linear polymers [108],'' ...

it is probably much more probable 'in the case 'of multifunctional' . ;
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: ...,. . -... '.;/!.?i ", .,.:macromolecules having multiple'

, __,! ... '. :', cycles. This was especially

-, . ',6 ,: ·;.. ).. ' I" '..":': ~',,.demonstrated in the synthesis of 

31 ' ': -34 catenane [1091 (Figure 9). ':i':
(a.)

*a ,',i'. "~ .... It should not be neglected as one;.'-':

(7§>:~ - ,' (n I I, C I' :('";" :of the possible topological con-' .:,::-

'"' ._/_ '/. ·:: ": ;.- ''- : figurat ions.

(b) (C)

Figure 9. Example of a topo10gi The theoretical quantitative
cal bond. :r evaluation of sol and gel fractions .':

(a) 34-34 catenary of Wasser-. ',..'of a random and evolving macro-'..
man [109].
.(b) Trans-cyclic isomer (2 molecular system cannot be done
components = l1molecule). preci'sely without certain hypo- 
(c) Exo-cyclic isomer (2'.com-
ponents ;= 2 molecules). , , theses which depend on the exis- ,'
ponents =~2 molecules).

tence of certain experimental ,.:-'i': ,..

constraints. These hypotheses ..: ..'.

will fix the number of molecular components and. possibly the

cyclomati:c number of each'of the' fractions.

Without any particular constraint and, in the case of a mass 

change, the most plausible and most suitable hypothesis consists of-: ,

identifying the gel fraction with the 'cyclomatic part. This hypo- ..

thesis amounts to assimilating the soluble fraction' in the linear .:.:l

part, i.e.', it amounts to excluding the cyclical' molecule's'.from the'.

soluble fraction, even the planar ones, This hypothesis is acceptable

if it is assumed that :the multifunctional cyclical components are :

very probably not planar because' of their random.production in space. :-:'

5. Structural Cqndition of Critical Transition.

For a finite.', random evolutionary graph,' this is the relation- .': ::

ship which certain characteristic quantities' must satisfy during :.,:;::.'i':.:: -

evolution when passing from the planar graph state to the S-topolo--::..:-::'

gical graph 'state:.. ' .

A S-topological 'graph is necessarily .cyc'lical, and the problem.:::::'

consists of establishing the necessary condition for the appearance'..;_',.':.;

of the first: cycl, .' .... ' ,

1''''','"',, ',4O,0,' 0 . 0I... · ..



Let us consider the most general case of a true, heterogamic - .

graph which 'is not stoichiometric.;' If we take into account that.the;.:..'.J-.

linear chains are not cyclical, the graph can be considered as 

consisting of an ensemble of nodes with functionality F and an
kensemble of branches Bij which belong to the classes Bij, Vk. Let.

us associate a graph G = (N, Ap) to the graph G = (M, Bp), the

corners of which are nodes and thee cross-links of which are the

branches of G. Each stage of evolution must result in the passage ,t '

through a certain number of cross-links of class Bij into the class

Bi _/j1 which is of a' lower order. The anti-order J is nonevol'utive.-.: '
T
: .'

::
:

The sequences of Bij, i + 0, VJ constitute an ordered partition of .

the evolutionary connectiveness of the various -classes of cross-links

.. towards the total evolutionary connectivity.

According to theorem III, a graph whose corners are nodes of ,', ,::.:::

functionality F and the cross-links of which 'will be 'produced with'"-. '

equal probability:, will of:necessity be cyclical if Ithe rate of.

evolution p satisfies the relationship:

2

..For a graph 'such''as 'G and for which the 'cross-links -are not pro--. 

duced with equal probability in time, the cyclization will appear

of necessity if the preceding relationship is satisfied for the

statistical subgraph. This .is true if the' pre-cross-links and the

anti-cross-links reach the maximum evolutionary connectivity with'

the greatest probabi'lityo, Let p be ''the rate of' evolution of this 
Y

subgraph and let bij be the number of cross-links of. class Bij.. We : 

have: 

-I,2-2 'F::
'

: :' :

For the graph G, the second term of, this relationship expresses the-.'i:.::

probability 'related to the connected branches of the statistical :"-''' '.i- :

subensemble which is most probable and which 'is capable of becoming:'.'.

cyclic by evolution.

....1....
i~~~~~~~~~~~~~~~~~~~["; :
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If P are the probabilities associated with the branches of . ?:.,''

the graph G, and by' setting:

.the structural condition for' critical transition can be written as

· Poo 2 (23)
i' -- 1 ,23 );

This relationship immediately defines 'the statistical cyclical':..',:.'

subgraph of G which, according to our hypothesis,' constitutes the -

graph for the 'gelified fraction.: It has by cross-links .and ny nodes-..'''J

such that: .

bI~ ~ ~ ~ ~~ , -r- ', r . ' .l ,

. .y by/.

The cyclomatic number v, which is a topological invariant: o'

G and G will be 'given by' the equation for the structural :;'state:

C _ v _ 2. ,- 

.,,, . b' : .. .' ', . .... 

Its: minimum value for cy = 1 will be the one for the gel

fraction which consists of a single: component. Thi possibility

exists in the case. of a.macrogel:.: .. ': ...

i -:-: ::': ; .4 - .-:. . ..: =.: -, ...- -2 .%-::;..:. :

,; .i. .: -; . Q: : %;:i:: :* ..... .,. ,; ,. , ., .,. ..: 0 ; . ................. .:I ., .- ::. .,
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THIRD' PART
- . ! .-. .(- ,: .- ' i -

STOCHASTIC ESCRIPTIC DESCRIPTION .

: ' I; , .: ', . :,-,

1. Conditions for Random Production.

The conditions for random production of the net of multifunction-'

al macromolecular systems considered here essentially consist of.~ .:;,.'.

a relationship which is. equiprobable in time and space for bonds '..'.:'.

which can be realized in chemistry -between reactivepoints of. .''

monomers.

The corresponding graphs can:be described by the' evaluation of .:-'.''.

the proportions of the various categories' of branches. They contain'.,:.'

all equiprobable realizations of corners and cross-links which make:.

up the branches.

One class of graphs' defined by having the same number of con--':':',~ ,

secutive branches can be 'obtained by a drawing procedure.. It con-~:'-.:.,:. '

sists of drawing the different entities (nodes, anti-nodes, cross-- : .

links, pre-cross-links, anti-cross-links) from an urn having a

definite 'composition. The 'drawing is governed by a law t. which

specifies' on the one hand, the permitted sequences and, on the other ;,,>:.'.'

hand, the forbidden sequences which result in returning the drawn

entity to the urn. Under these conditions, it can be shown' [110] ::.

that one obtains an approximation to the probability for the rel'ative,:. "'

proportions of the various categories' of possible branches. After.',,.(/!'??'.

each permitted drawing, the initial state of the urn is restored.. ;:. ,.:..:;
* : ... . ; ··'·y,, ;; - .

Thes'e considerations,. a's well as the resulting calculations,.': '. :,..

have been described by' other authors [111]. We will limit 'outselves".'?/,..:·

to describing the main results which makes it possible to establish:".; :,.

the equation for critical transition for any system which'b.elongs to .. .

4. .. .,3 .



one of these three types considered here using the critical transi-a ::.. .;.*::'

tion structure condition [23]. The study of this equation leads to ,'/:' : '

the calculation of the critical' rate of evolution, as well as to. 'r,;.'j':' :

the calculation of the possible limits of the existence 'region for

a critical transition as a function of the structural parameters of.':.:: '

the particular system under consideration. .. ,.,. ....

2. Homogamic Systems.

Let a be the proportion of points which belong to the multi-..' " ,/:.l

functional units. The principal.entities'can be'sch'ematically "'-'.::'?'':

represented· (Figure 10).

-i .' . ' ' ' ' , X ', ', '; ' -' ' ; ': ; '

Node' Anti-node Cross-link .Pre crb6ss-link. ." ,
].:·-.::- -, / ..

' ' l .,Zero order line .' : .'.

Nlon-zerood ne(3) -od ln ,

Figure 10.. Graph for a homogamic system.
Schematic representation of the 'principal 
entities.

,:·! , ' '

2.1. ' Frob'ab'i'lit'i'e's' A'ss'o'ciate'd With th'e Vari'o'u's' Cl'asses' of ,;:

Br'a'n'ches. Zero order of branches.:',

.,. ·,, ......... :
r0 1=-.! - .- (26)i

First 'order of branches: .:' : .. :

· -- . ; , .( ' i. 

i , ': CO(27.).. : : 

Branches' of arbitrary order c:

*. " : .... : " · ' .:-'/,'(. -,,).' - ....... :..

a k
The probabilities' associated with :the branches Bi 'are 'shown in. 

Table I.

i , 4.- ·; rf



-TABLE I. PROBABILITIES ASSOCIATED WITH THE

BRANCHES OF A ,'HOMOGAMIC GRAPH

: - .2 · · .· · - .; . , . '· 3.

__ _ ... . a( )C_. _ ; . . _ __, _ .. ':. _ 'C :!

° a C~p tx~l-a~c~ls ¢(Ia)-car C...? a -a~n-lC~pn ..... .":

I-. .-p' ' ' , ' ..,

_ c, . _. _ P ___I_,. . _) '' __1 ;", '...

. I (I'FCC (-P)('', ... :al-c, :n'a tp2(l- -nla rlcl(T-' p'

11k pU[~p)~-~ ~ 4.,._.__ ' C~-p1'cJ(' '-'' .(' 'c,;'"- 
'

.1i''-. . .''.. '' "' ' *-:',' I '''. K .1>__ ____~~~~~~~~~~~~. . ',___ , .._= ''1 '"

2.2. 'Critical transition equation. A homogamic system which

does not have any branches with an anti-order has the following

critical transition structural condition: ,

+;: _pe_=2, - - 29)

,.from which itfollows that: ' ... -' ' ......

',2

l'1 (F; 2) 2 rO. 1)

; 5 o :. i"". c r' ;

-. , .-. -. . ;. .

". . , : r.. ., ,' . ,.... 

· - ~i,45' ',' ": ' .' .

~~~~~~~~~~~~~~~~~;'...:, ,.,..~.. ?' .,



.. ... *: . .

2.2.1. A'lgebrai'c' So'lut'ion. This equation always has a root.

between zero and one. A homogamic system a'lways becomes gelified :

* no matter what its values of the structural parameters are, if the: ':

critical rate of evolution is reached: ::.'r:,'

*,-FPey- ¢l.o -S(lI :A , .- 2 

-, ...0 2(1 )('-2) ' (32)

If a = 1, the system consists solely of multifunctional units, that. :-I,:

is: Pc =2/F. . , ,

2.2.2. 'Graphica' Solution.. 'The equation can always be put .':'.'.;

in the form.:

*.-2, 2--.2. 33),??
: ' ! .j , . :. , : I .

It may be advantageous to construct the nomogram (Figure :11) from 

the two families of curves:: 
/" 'I : "

,;: .,. ; ,, ,.. . .. Q ;. .; -- -' 

,,·;· ~ ~ ~ ~ ~ ~ ,: . ..' : , .. ; . . . .

,-,' ......homogamic system.......- ;

;·, . '-,,,' : ; '- ̂ ; r .:

2 :~ :; . ' / 2 i()':':

'; ' - .. (t ... ;.."', ::: 

. igure ll. Nom.gram for the determina- , ' : . :,:.:;. .

- . "- : .

rl ;: .:i : :::::~~~~~~~~:·-:··:;~~~:I i I ·: · ....
.·: 1 . :i::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



This nomogram shows that for a given value of F, the value of the
critical rate becomes smaller in proportion to the number of multi-' .;:;..
functional units. Also, for the same proportion of reactive points,'- i

.especially for a small proportion, corresponding to multifunctional,'

units, the value of the critical yield decreases very rapidly when
the functionality increases. These. results Justify the fact that",'..
gelification appears suddenly in systems which'have an average high .
functionality T in a general way.. This is true 'outside of any. 
considerations of chemical kinetics.

: - ' , ... .. .. . ', ::

3. Pseudoheterogamic Systems. : .

By a and 8, we will designate.the proportions of points A and .-:' --
B which belong tO. multifunctional units. The principal entities ';;....
can be schematically represented (Figure 12).

: Link Anti-linkc ",i

-' -lin ;k-.--X- - ; -' ' "
' ,No~de Anti-node ,Cross-link "'Pre cross-link- ...

Zero order line

'f~-~~i, -O!"-- T'. 
. [ . . . .·- 

., Non-zero orderllinne '(i.3)

.Figure '12.. Graph 'for a pseudo-heterogamic .
system. Schematic representation of the
principal entities.

3.1.. Probab'ilit'ies' 'As'soc'i'ate'd With the 'Di'ffe'rent' 'Classes 'of
Branches. We assume that r > 1 and will express the results as a 
function of the generalized evolution rate p.

3.1.1. Branches' With 'Ant'i-Order 'Zero. Branches. of zero order: .

Branches of order one: ..

147



Branches of arbitraryorder .....

;;o lt * s | B 0 g +8 r\ ;(38)b

3.1.2 . ,Bra'n'ches. ' With ','Anti.-Order One. Branches of order zero: ,

.(39)

Branches of arbitrary order c-: .

...... _ :?: .,,

The probabilities associated with the branches B are collectedij
in Table II. When the valueof the stoichiometric ratio is less ;than ... :' ,.

one, the probabilities associated with branches Bk are obtained . ..i:
from the preceding ones by carrying.out the transformations r + l/r

and 3 a .

3.2. Equati:ons' 'of Cri't'i'cal' Tran'slti'on. The' value of the anti-.:-.,

order of branches' of a pseudo-heterogamic system cannot be equal to ',-:.

one, and the corresponding structural condition: for critical .transi-':e ..:

tion is written as: '.. -. '

" 00 +- 1 s 1 (4) 41)

from which it follows that:: '.,;',

Jpai-p( 2P)] 2 r-5...2 ,-

5 -, 2, , '; -r,, , '; (42).. .

or: : ; - ..

1[ _.- 2,{ - 2 ~ . ( 4 -'
*P,;- 

...-.l .2. 

1~ 4 8
~~~~~48 ~~ ~ ~ , .



-' J
 
:
 

i
 _
 
!
 

~
 

!
 

~-J 
i
 

'J .
.!
 

!
 

i
 '
 

i. 
!
 .'~q~i

· 
~ 

~
, 

~ 
-"

"
L

~
.. 

~ 
~ 

.
J 

.~,
~'~' 

"
It I 

..Z~. 
I 

'~-~ 
---~

.'"
 ~

-" 
I-"

~
 

I 
'1 

~ 
0 

' 
' 

....
"
,''

/ 
r~'~ ' 

' 
, -~" 

I ,"
'~."

"
;"

'"
.

-
~ 

.
· 

~
'. 

, 
'_-- .','. ,'l

·
 

/ 
' 

-
' 

-, .
I-. 

"
: 

J'. ': 
"
':'"

 
~" 

i '
-~ 

t
 =--- /.,=. 

-,$-~-! 
~
 

i.-,'.'.l.-... I ~. I.-.~,~.: ~............,......: ......,,.i~
'-' 'i "~ 

L
 L,' 

"-' · l--' ~-...1 
%~' 'l -' !"~__1.. ,' 

.".: .'" '.1.' :' "-- .
.:i~:.

·
 
'
 

-~. I
 .~
,
.
 

~..~'i. 
~' i

 ~' .
~. ~:. ~ r" ~

 1
 ~"i--'i-: j~- ,~.~ % 1

~
·

.= 
~

.= 
~
 ,: 

.
"
,
.
 ~
 :'J. 

.
."l. 

,
 ..... I..-'.,:'- 

.
.
.
.

"' '
Z
 '
 .

=
 

.
... _..~. 

.
.
 
.
:
 
..... -

I.~.:'~.. .... '.:"1 ,.'.' 
':. J"..,~- 

'"., ';~

~
 '
 '
 '- 

,:~ 
~
 

~
:
"
 ~
 
.
.,I.,..,,i.~. 

I
 
I_ 

'. ..... '-"" '" 
'
 
.
.
.
.
.
.
.
.
.
.

'"'
,
.
,
 
~
.
 
~
 -'"~ '

 ,, 
=. 

'.~ '.. "...S.:' .It. 
'"'.'.. :' '..'.~"" "'.':'.';-' 

"'...~ 
'"' · ~',,;'-~'..-.'~':!~!

,., 
~
-
-
 .,~.-~ 

-
-
..... ~ 

.'-.~. 
~,- .

.""!".:.~.!:'.:,'~I!'
,+

' -
~. 

~
,,+

,l,,.~
 

~ .. 
.., 

..,. 
.

.
: 

.: 
..

~,,
.
-
 ).-'..' .

.
 ':'.' 

'
.
.
:
;
:
 

: 
~. 

....::,
"
'
+
 

~
%,, 

~
 

'
 

~
 

"
'
"
 '
 

"~ 
"
"
 
"
"
'
 '
 .
:
 
·
 '
 .j 

'
 
-
.
.
.
.
.

':.' .,i,'
%
"

"-:-~' 
~- "' ,,., ..

7-. 
~'- ',J' '-~. '

~
 ". .... "' 

'
-__ o

'"' '"' 
"
 "
 "
 :
j

'
 

' L

:
'U' 

'.3"' ,.'t 
.: 

'

-
-
-
.
 ~ ._ 

'
~
'
 

.
.
~
.
.
~
 ,..;.J 

:
"

,
 .
.,, .

.
.: ' 
:
.
 

'
 ..... I '!':'.:: 

'
 -'- ~ .i '

:
~
:

· .. 
.. 

~ ,---~... 
,--~_, ::.~ .~

~
 

?
 ,,,,.~ ,~.:1

' 
'
 '''"'~

'
i

"
-~
 

"':'~ 
~
.

~. 
.

.
;
.
 

.:": ;
'
i
.
 
·
 

.
.

~
,
,
.
 .
~
 ,.'-.'.....~.

~
-
 

~
 '.,'

-...... ,,..,, 
.....

!
?

,
 

r
 .
.
.
.
.
 ....

~
.
 

I
 

,
 i

~
.
-
 i
 

'
 

;
 

'
 '
'

, 
&

 
]' 

~, 
~

-
i:,L,

I,
'~

 
'~

' 
~

' 
/' 

'~
 

--
' 

: 
~

"
"' 

-
'7 .

e
'- 

'
'
 

,
 i"":-,' '

 'lit"

1 .
.

n 
.

., 
"

;,,..,,.,.. :. ......
,. ,.. ...". 

,:.: 
· 

, 
.;.,- .... -

~
 

._
 -... 

'.... 
S
 .

·
 17 
~
 
%
 ~
 

,~.
.1

.I

.1II

.
_ 

-
I

, 
II
..

I.j

_ 
.-

� i.III

I.,IIIIIII

.
,:, 

-:1-+. 
I..'. 

.

.
C- 

.
iw

.
a

elI'

,: ~~~. i ,|. 
,, 

.... :,,.' 
.

i,'' 
'., 

.
-' 

;' ' 
~

.' 
-

''t 
Y

." 
-'~

.
.
-
 

, 
,' 

-. 
,,- -

"
,:'. 

.
,
~
I

.
.
 

_
. 

.
'
 
'
o
:
I
 

," · 
.",. 

.
.:

; 
-,.. 

.
-

, 
.,, 

.
,. 

·
 !.;,.:-

r- ''1
 

' 
o
-
 

'' 
' ·.'' 

'
*
 
/
'
 

·
 

¢
t
"
'
 

.,' 
1
' 

, 
,
'
 

~
 

__ ".
 

, 
W
.
~
'

8 
IJ .

r 
, 

'

-
8
'i. 

'I;,8
H

i'. 
'
;
j
 

.

i 
I i

I. 
...

.
_,_ 

I 
I

! 
I

' 
.

.

C
,j

4
'I 1

3 11II 
I

o,C.Q

C..;

mE-IHE.)
0C

7

C/'r-..I---
I'-tI'-H

::

1 
_ 

I. 

-
.

'" "' 
' 

'
,
'
 .

"
 

'
I
 

' 
' ""'" 

"':" '"
 

,'% 
'''' 

'" ' 
*
'
 

.' :
"
;
-

";,'..' .
.
 

.-.. -. ..-"",_ ' .".,. 
':. ',. ~'

:
'
 

': ~
,
.
!
:
 

'.-':.', ?
'

~~~~~~~~~~~~. 
,. 

X
 .

.
,,,A ~.' ',. ,), ,, ~:....

':. 
, 

."
'!'. 

.''-: 
:

I 
H

: 
I<

a
E-4

.t 
.

, 1, 
.

..

49

I -LI

'Z



. .. :. b As : . .. ... · f. :. 

by setting:' ' :. '.

.. , .... :...:iI-r-- [+ .2

This Equation (43) is, therefore, in the form of Equation (30) for '.'; :'

the homogamic system (30) up to a factor of R. This correcting

factor takes into account the stoichiometry which stands in.a directa

-relationship with the structural parameters for a pseudo-heterogami.c 

system. In particular, if the system is stoichiometric, the critical_ . I.-

transition equation is identical with the one for a homogamic system.. :'

For any value of p different; from one, it can be written- in

the following form: :

- P) (:- 2) - l,(Vl- 2 + 2R!) + 1 - 0. : :45
:......... .(45). -

3.2.1. 'Algebraic Soluti'on. The critical value of the evolution,,.'

rate will be given by the root of this equation which corresponds to.. ..

the possible values of the evolution rate between.zero and one, 'i.e'. -':'-.

for values of p such that: : ' .

':: .''(46)

This condition is satisfied if: ::.: ... '

~, , < ~ -:p-',- 2). ·. (47) :: . .

In the case where the :stoichi'ometr.ic ratio r is less than one-, .. -

we would also have: .: .:

-- I'' ' ' - -(l _2i0<r61-" " "'· -'0':.1. 1'4 L'-' 

I . ,,(r-i
~ <

' .(48)..'

In a general, way, :the critical 'transition will be possible if' the:': .. 

parametric condition for critical transition is satisfied, i.e., :. '..

,---->P~r-2)t.t~I+p(P 2)i

., . (49) ,

: 50



' :: * : . ::

where p is the proportion of minority points which belong to multi-, : .

functional units., ' ' -' .;

The critical transition of necessity is obtained if the critical 

value of the evolution rate is reached, i.e., for:

* (;--2 + 21)-[(I.'2-1. 211.)-SL(1--)(-2)],I2
- ({ 2)('-2). (50)

If B = 1, it follows that a = 1, and, therefore, Pc= 2/F. 

3.2.2. Graphical Solution.. The equation can always b e'written: ';'"

in the form:

-- '2 -- 211 21 
;,,(1_i- F) +- , -- -- ,.

. 2j . .-2 . .(51 ) . .' :

As in the preceding case, we can construct the .nomogram (Figure 13)

from the two families of curves: 

,(,, a, r, ;) = p I~ - 2 -(53)

X -9(1' P) i(- .) ( ) ;.

.The family of straight lines Ip(p, B, r, F ) itself consists of two :,.:j :

subfamilies which correspond to the region of permissible values of:fi.:.'J

r for a determined value of F.: Therefore, on each of the curves of-

the family $(p, S), there is a region GL such that the point G is-.

the intersection with i(p, $, r, F) for r = 1. The point L has the ...

abscissa which corresponds to the intersection of the line p(p, ,-:

r, F) for r = X with the axis O~ , that is: 2/[2 + B(F - 2)]. 'The'

nomogram consists of the trace of the double family of lines [F20]:~; .:0

which makes it possible to calculate, PA and .....

4. True Heterogamic Systems.

51.. 
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Po z-CO r.

.. I.: .. 61. . .

We will first examine the simple case of stoichiometric system",s

whose branches do not have an anti-order. The description:// ,of n-, '

stoichiometricsy'tems: will be obtained from the preceding one

by suppressing the elements which-were called fictitious. The

number of these suppressed elements correspond to the value of t 'he'.

stoichiometric ratio of the system" ,.under consideration.

In a general way, because of' the particular natu re of the 

repetition modeAA-BB whicha meian pre-cross -link an havet hevaious 

possible branches have two different maximum orders of magnitude, ,

depending on'the parity of their minimal- ligamic number k:, which is

connected with 'the branch type. The principal entities can :be

schematically represented (Figure.1I).

4l.l.. Stoichiometric Systems"

52.
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:: ' :., ,:-, i;..t;:

: t w : f': ', l: ':':" .,: ::

Anti-node A Fictitious Fictitious : "'
Anti-node A(r < 1) Crosslink (r <'l_

o . ° °..'--':' --:0
Node Anti-node B Fictitious Fictitious

Anti-node B(r.>l) Crosslink '(r>1) ''( .
-r, 1 Cr l '.r 11, .....':: 0 -

Branch E, (Type 'AA) '... .

Anti-order
6

Branch (Type BB)

Figure 14. Graph of a true heterogamic system.
S chematic representation of the
principle entities (example of branches,' ..

Bikj ) · ':.. ': , '

4.1.1. · Probabilitfies' 'As'so'c'iatetd With Th'e Vari'ous 'Clas'ses of.' : 

'

Bran'ches. We will now give the general expressions which make it

: possible to find the probability associated with a class of branches:

of order given in advance (where zero is considered even). .

The expressions for the BB:type branches are derived from :thos'e::.,

of type AA by the transformation''- z-. in the present case; (r' ='). ' ....

We will have, by .setting )./ ,-' ):(':

Odd order: : ' 

5 3' , · -'.'. : : : ,;,:i
''5 3 . . . . '' '',""5,' -;
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+'! '¢-- ¢(1+ '1 -P

.. .. . ... .'" .(~ + .).. _ (~.. ..I

equal to m 1.

:X- - . - , - .. . ... . .. . ..... ...

4- .1.2.. Eq-atio fo, Crticl a. . . .

: (S 1 ~e ' _. .. : .. - .(5 )'

,;''-.. ,. '"

Even order: e t for n

.. - , N S. 

.2" p( _ p)c( -,a)(l-)] 56

These 'results are.'schtematictlhey represtented in Table III'ing

whichem ls suchthat m tho e n'umbers o rep'etition modes of awbr:anch S

equal to m - p. .' '' '' '_'....

a.1l2.'. E'quation''fo'r C'rlt'lc'al'T'r'an'slt'on. It as pmmedlately -.-'.

4.2.. Nonstoichiom~etric Systems.. We wlll: flrst- assume 'that....' ','

value of the stoichiometric ratio 'is less than one for conveniene ..0''' ...

of notatmon. It follows that the proportions-of points :abelongings ".'.".;;.'/,.'.

- real nodal ponts r. . .' ',' -

fictitious anti-nodal points: 1- r.

54 : ;
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TABLE III. PROBABILITIES ASSOCIATED TO THE BRANCHES

TRUE STOICHIOMETRIC:HETEROGAMIC GRAPH
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4.2.1. Probabilities As'socia't'ed With' The' Vari'ous 'Class'es of ,'

B ranches. · ;':' '

4.2.1.1. 'Probabilities Relate'd t'o Branches' With' Ant'i-Order

Zero. They are immediately derived from the probabilities associated

with the branches of the stoichiometric.system by means of the .trans-

formations:

i--c. -> .r(l o-)..

4.2.1.2. Probab'i'litie's' R'elat'e'd 't'o B'ranch'e's' With Nonzero' 'Anti-
k kOrder. The Pij are obtained from the Pk corresponding to the .- , .

______ . iO .

stoichiometric system by replacing in :the branches the real repetition '::',"

modes by the fictitious repetition modes which consist of a real : '

anti-node of species B and, a fictitious anti-node of species A. This

is done in a uniform manner. It' follows that, in contrast to the .-':. '..

order with which all the cross-links are distributed, the anti-order'.;:,:--:

is distributed over all the cross-links. Under these conditions,

we can utilize the calculation procedure used for evaluating the 

probabilities associated with branches of order i of the homogamic. ' ;

system beginning with branches of order one.

4.2.1.3. ' Prob'ab'il'it'ies' A'ss'oc'i'atte'd' With The B'ranche's' o'f Or'der' ';: 

Zero and 'An't'i'-Order Non'zero. These intervene when the equation for:.: ,fo,

critical transition is established. For. each :'type of..branch, we - i

designate them by. P0:' . .

(58) ,.

The calculations are carried out according to the..above pro-:..- -

cedure which -leads' to the following results: 
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}0' (= =-(-)!-(i-"l{-)(1.1')) (O) ''

rp. Ad 2r ,p(1 .-r)(-) __ -- c)

4.2.1.4. Results 'for the Ensemb'le. The probabilities associated:"

with the various branches Bkj can be collected in a table which can,ij
be derived from Table III by an appropriate transformation and by

adding to it a third dimension: corresponding to the values of the 

anti-order.

In the case where r > 1, the results are derived from the ':

preceding ones by the following transformations: ..

PA -> , 11 . .

4.2.2. Equation' 'for 'Cri'ti'cal Transition'. The structural .
condition for a critical transition is written as:

'00 + , +. (6 2)
'UPo kr'°°tl c-; --- I- - - (62, ' .

from which it follows that, by replacing various terms by their..:. ...

.expressions calculated previously:

- If r < 1 and by substituting PA for p:.

r'c ,'(1 -:-p)+ 2 ?,,p--.) r,,', -(--- r )] [-rl,(1.-) (--1) 

, , -2 ?(' ['k / -( =_.) (IO- 214-ci'YOt- + Mr) ( I e, )

- If r > 1, the corresponding equation in which.p= pB' is- "'

from the above expression by'the transformations: ,

: .. . :,.. .. : .. .. 4'.
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These two equations can be expressed either as a function of PA' ;'

or PB by means of the transformation:

- If r = 1, the two preceding equations lead to the following .

simple equation:. '.. ':

obtained for (63) by ordering it with respect to decreasing powers .

of PA:

[(Il- P --P)- I.Y-.-:(I L -- . (21--)--':-

-2p^,, 11,.(l--.1) (I{ l''):' 9 [i--4 -f-8-Il- I )

-p" (I P. 2)(' :::"x2 "

;

O

-1 r [1--C' l (-- ) (I - 2'(I -. 6 -' 2.,: -.-.)

-, ,e,,.P- (l -- r) (l -B)}]-- ~,S 1(- = 0.._
2 . -- . -

The critical value of the evolution rate is given by the root

of this equation and lies between,,zero and one. In order fo. r such

a root to exist, the various parameters must satisfy a-relationship

which constitutes the parametric condition for critical-transition.

One finds that r must satisfy:

with:

[2:(i -- 2) -- . 1- -- ) { 2.) fX- + (1i -| ) -
*j~~~~~ ~'- -,r(-)--l- ,: . 1 

+ C [fc.,(I - A)- .( -- )P -2) [22t, + (' - :,)] , .-. :

. s.-t(l- )t 2 -. (22(1) 2).+ )a i 
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: .· : :·· : ,: :· ·u -: · t ·.··· ·-·::,

If.a = 0: . .

= 2

- ;; t P2 (69

"i t .-:j 2)(m -I1) -} 2 ( 70) .

In the casewhere the stoichiometric ratio is larger than one, one -:

finds that- r must satisfy the' relationship:

S < ....... ; :. (71) . .

with:

rm- [2,x- 2-2(1- c) .- c('-- 2)}[.2 -p. ] "- '-'.

-+ s (i -o) [(i?.'.-2) .- 2)} I/2J .:j (72

if:

ri . . .r .,

In general terms, critical transition is possible if the double ';general

parametric condition for criticaf a square root between zero ansitd ion is satisfied that is, deree

*4.2.2.2. ;Graphical Solution.' Principal' Cases. The' construc- .

" ' ' , ''

It idepends on 4 parameter s, a, F and r tis illusory. However. ::'

the criticale r of the evanolbeution rate, which in the general

case consists or a square root between zero and one. The ofr theical studegree.

equation can be determined by.means of a computer inipractic.e .'
. i,:' ',' .i::

/4.2.2.2. 'Graphical Solution. PrinCipal 'Cases. The construc- ... :;

tion of a nomogram for the general case of a 6 t h degree equation : .'...' ,

which depends on 4 parameters, a, B, F and r is-illusory. However, ,, 7.. v:

except for the case r = 1, it can be simplified significantly for '':' 
:"

the case where a or B have.values:zero or one. The graphical. study.?'. 
'
.:
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case n'l general case

* , . , , , I ' - ' ........ ' ' " "

'

-

:

,

:

,:..
' X---; a or

a 'or .P X X - -. '': '".- ;. ;:

:case no 2 ' case n3 , ..

% "SI

. .ouCisI aandp'. :.:- ;. ..--

case n0 4 case no '

Figure 15. True Heterogramic systems'. -.
Schematic' representation 'of . .
five principal cases

is then simplified. We 'can enumerate the following cases: 

[CI+C]:,-1--S principal cases,

where the case (a = 0, I = O) has'been eliminated, which corresponds

to linear systems. For reasons of symmetry A-.-1 , 4 simple cases 

can be' distinguished, in. addition to the general case (Figure 15). ':.

D 6. .0 ... .' '- ' ' ' '. - ''"'' ':: '
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FOURTH' PART 

EXPERIMENTAL VERIFICATIONS

The experimental values of the gelification points cited in '.'. :' '

the literature primarily deal with systems which have a'simple or....

relatively simple initial composition with respect to the monomers, 

.of the various categories.- Also, we have been led to study pseudo-heterogam 'ic . '

abase systems, for example, for the undecane hydroxy - 11 system [112]

or true heterogamic systems which have many more possible combinations.:[i
'
I:

We will give several results for the latter after reviewing two..' ''

simple cases.

.1. Case No. 4. This corresponds to systems which include :.

multifunctional 'units A and bifunctional units B. For stoichiometric ...

systems, the critical transition equation is, reduced to: :]..

2

(7.5) . ;.

The comparison of theoretical and experimental values of the critical

evolution rate 'is shown' in Table 'IV. Outside of modifications', . .:'

which are always possible through secondary reactions or by prefer-. .. .

ential removal of one of- the constituents;, it seems that the ob ser.ve d:''.;.

deviations from the theoretical model' must be.attributed to the

nonequiprobable spatial behavior. This is due to the primary structure.:

of the reacting agents (flexibility in the spatial structure) and.

also due to an evolution regime which is more or less removed from '; .'",'

the quasi-stationary regime-'[113]. 

2.. Case No. 3.: It corresponds to syst'ems made up of bifun'ction- '

al units which belong to two species A and B and multifunctional-" .':'':.

'units which belong to 'a ·single species', for example, B..
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TABLE IV

TRUE HIETEROGAMIC SYSTEMS (CASE NUMBE
CRITICAL RATES OF EVOLUTION COMPAR

Stoichiometric systems P tI

Glycerol (F = 3) and:
phthalic anhydride or acid

succinic anhydride or acid
acidic acid
sebacic acid

Penta-erythritol(F = 4) and:

adipic acid

0.800

0.80C
0.80C
0.800

0.666

The equations for critical transition ar

function of the ,stoichiometric ratio:

2 ( I- l J) 2

.r < t (p - PA):

rp> 1. (p ,,)

r)~~~) 

;'~[,·-*-;,:( [~)l·rci [~ .q,(: =1 ~) (t[k-~)

Critical transition parameter condition:

W Yi ij(!( -2)R + 27- i2 .

t:621

i. ~ ~ ~~~~. ., ~:~: .-.. 7;:':·~~,.i

-·-···:: ~~ ~~ · .h ;?.

.: ' ; , 

ER 4)
RED

h Pex (
7 )e :::

D 0.786 : .:0 :.6

A,0.796 (5)

o~~5~ o :0 0 -~0760
D o 0.755

.0.777

0.606 : (8) -:
0.63: 1
0.65: (2'1)

.e as follows ::as a I

: : :I ~:::-·': :·: ':···~·· :··. .'!7 i,:/:? : '

(76)::

·~~~~~~:

2:77

F-2 ~~(78)

(79)~~~~~~~~j::

. IiI

p I I ,

d .1 . ,I I . I i .i.i
, � ; , - i ., 1,

I j

, .. i I .
I I

.- i

I I I '� ,

- 7 -7-7. 1-- - -1 - -- "



This system was studied especially by Flory [8]. The comparison of :

theoretical and experimental values is shown in Table V. It is

shown that when the value of r is located slightly outside of the

theoretical limit, gelification occurs nevertheless. It seems that '

this is.a general phenomenon' [1141. and leads to nonequiprobable -:

behavior which becomes more sensit'ive,the farther the system is '

removed from stoichiometry. 

3. Case No. 1 (general case). It corresponds to systems which ,..

contain units from species A and from species B in arbitrary pro- :' ''·

portions and no matter, their functionality is.' The systems .- -.

which we have studied consist of points A belonging to adipic and -....

tricarbolic acids .and'i points B which belong to diethylene glycol 

and to. pentaerythritol. ,

The products were purified by several distillations and re-: '':"'.'

crystallizations. Polycondensation was carried out at 1540 C

(jacket controlled by ' anysol vapor with boiling) and in a pure:.'

nitrogen atmosphere. The nitrogen stream, brought in by a thin tube,:,'...; '

extended to the center of reaction.: It makes it possible to agitate':';"

the medium and decelerate the appearance of gelification by stopping" 

the rising of nitrogen bubbles. The samples taken are dissolved '

in a acetophenonei over 2 to 3 hours. The evolution rate of poly- -

condensation is measured by conductimetric dosage of free acid :: ':·'::',':

functions using an alcoholic potassium solution.

The values of the evolution rates retained as critical values... ::... .-...

are limiting values within two limits: a smaller upper limit 

corresponds to samples which havethe smallest insoluble fraction. ':' .

and a larger lower limit, which corresponds. to the maximum value of

the evolution rate of the samples which are completely soluble.,

Taking the experimental errors of dosage into account, the values 

are only given to' + 0.005.

The composition'of the systems is determined by several

weighings, which corresponds to the successive introduction of. -:.'. '

constituents in the polycondensation tube. This makes it possible-

t.o calculate the four parameters a, B, r, F of the general equation. '
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TABLE V

TRUE HETEROGAMIC SYSTEMS (CASE NO. 3). CRITICAL
RATES OF EVOLUTION COMPARED

Gelification Points

Experimental Theoretical

Tricarbolic acid (F = 3)
Glycol diethylene and:

adipic acid 1.000 0.293 0.911 0.904 0.007.?
succinic acid 1.000 0.194 0.939 0.929 0.010 ..
succinic acid 1.002 0.404 0.894 0.883 0.011- .
adipic acid 0.800 0.375 0.9907 non gel. 0.009 . · '

(r .< 0.842) :

adipic acid 0.800 0.250 non gel non gel 0.000
(r< 0.888) 

TABLE VI ":::

TRUE HETEROGAMIC SYSTEMS (CASE NO. 1 OR GENERAL CASE). CRITICAL -'
RATES OF EVOLUTION COMPARED

Expt. I 5tes .CoolNo. F I'

0,974; 0,599 O,605 3,000 0,7',5 0,749 0,00's

2 0,935 0,200 0,f,0 0,30 0S 0,OOS

3__0_ I. 7 0,59 0,210 ,OS15 0,S07 0,00'

4 . 0,932 . 04: 0,99" 0,730 0,773 0 007

0,950 0,599 0,753I5 0,7-5 0.7SO 0,00%.

1,I 14 0, 2C O,20 0, O10 OSIG3 0,000 [

'3 0,939 . - 0,393 0,400 O'- S0,0- 0797 0

8 0,931 0,600 S0,72 3,359 o0,r; 0oo56 · 0,009

9 0,73 O,-iS o 3,23 .'3 0,690 .... . .00' 

o~~o~ o. ~ o . 7s-!~-, o;o, :----- ::' :.: ?i:'

9 0,969 ' 0-5,;0. -. I'

I Reproduced from 
best available copy. c.'

6Lt
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The comparison of the experimental values and the theoretical

values calculated from Equation (63) and its transformation (64) (*),:':.'..

is given in Table VI rounded to the third decimal.

The agreement of the results is on the order (1 part per 100)

or very close (< 2 per 100) of the' experimental error which is'. : I

estimated. For systems close to stoichiometry studied here, it is .''-'

not possible to detect a noticeable deviation in.behavior from the ''

theoretical model.

, .... : ....; , '

-,Calculations carried out on the CAB 500 computer (P.A.':. syste.'. . , . . . .'; · , ' ·;

'' ' , . .' ! ' 

D ' s R ". .... ",'::

', . , ' ' 7 , S;~~~~~~~~:
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FIFTH 
"
PART

APPLICATIONS OF THE THEORY ..

In addition to the important concepts of critical transition

and the region of existence of this transition which can be de- ....

termined, the present theory can interpret certain phenomena. Cer-- .

tain techniques can be developed as.,well. It is also.possible to .

determine certain average values, the knowledge of which may be

desirable in measurements and which can be verified experimentally"...

Above this, it is possible to generalize the theory to the case

where the systems comprise monofunctional monomer units or monomers, 

which have points which are not equally reacti've. 'This can be done" .,.;, "

by starting with the initial scheme..

The complete development of these different questions would 
'
... .

be outside of the framework of the report. We shall. ' ''.' ' .

limit ourselves to certain brief indications.

1. Reticulation,. Vulcanization. 

Reticulation and vulcanization must be 'considered less as

phenomena than as particular techniques associated with the general. -;

phenomenon of gelification. In effect, they consist in an evolutio'n ....

of the structure of a macromolecular multifunctional compound which

has a planar graph towards the 'structure which has a nonplanar graph, ., .'

beginning with a state which 'is different from state I of the

ensemble of the disjoint monomers.

The description of the reticulation or vulcanization processes. ..;. '·.

thus leads to a description of the type described above.' The origin '...

of evolution is taken as the state corresponding to that of the
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partial graph G = (M, Rp). This is state I of a graph whose dis-

joint "apexes" are made up by the ensemble of the components of:

G= (M, Rp). The functionality of these apexes becomes higher,the: `- '.

larger p becomes. Frequently in practice, the state of the initial .

system is modified beginning with the origin of the process by the

addition of a reticulating agent which, in general, consists of bi-`.'::

functional monomers. The reactive points of the reticulating agent!'./ /1) ..

can belong to any of the species presented in connection with the.'':. :

initial polymer. In particular, it can belong to a species which

has remained latent during the development of the polymer and.which'

can react under the physical and chemical conditions imposed. If, 

for example, in the case of unsaturated polyesters, the different' 

type of bonds are established simultaneously, the complete descrip-

types of the process results in.the superposition of the evolution .'..

processes for the two systems (homogamic and heterogamic). .

In general, vulcanization must be considered as a reticulation . '-

limited to its origin which allows a certain superposition .

of characteristics, especially mechanical ones, which belong to .'.'..'i,' ' ,'.

each of the linear and cyclical structures.

Depending on the type of bonds coming into play, the reticula- 1.''. ;:

tion and vulcanization can.be quantitatively interpreted by using-

one 'of the' models proposed previously [115]. ..

2. Average Molecular Quantities'.. 

The numerical' values 'of average' molecular quantities are ob-.

tained directly from reduced state equations. Constraints which

are inherent to the real systems'.:under consideration must be taken

into account. The evaluation of the sol and gel fractions, as well

as the molecular quantities',assume certain the:oretical or experimen-

tal hypotheses regarding the connectivity-of the gel' fraction. .They:.-'''

may also involve the value of the cyclomatic member of each of these..-;':

fractions. .

On the other hand, the statistical description adapted here.,::

makes it possible to obtain :one additional piece.'of information:- .-.. :
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this is the distribution of molecules of the soluble fraction into;.

ramified molecules and linear molecules. In effect, a ramified.,

component of G corresponds to a ramified component of G (see:Second

Part, 5). But (i + j - 1) linear floating chains in G correspond to-,.:.-

a cross-link of class Bij and G.,

Finally, if the most likely form of distribution is 'taken, into-.

account, it will be possible to calculate the different average

molecular quantities which are used in experiments in general (average'.

with respect to weight, average with respect to z, etc.).H,

'' '- ' T ; A :' - ': · .' :,,-'','0-

3. Systems Consisting of Monofunctional Units.

The statistical description of such systems immediately results ..:,- . '.

from the description.given previously, if it is noted that one' can. ':

assimilate the collection of monofunctional units from an arbitrary:''

number F' into a fictitious .node' having functionality F' whose,

decomposition into its parts leads to as many corners as are;: . : , ::::, ', .

definitely pending. The corresponding supporting graph will have.:,.' ' 

two new types of branches in addition to the classical types and ,,

independent of their connected nature:

- branches which have two fictitious nodal extremities (floating;.,:-

branches), which will make up linear floating chains with nonreactive.-,'

extremities of the real graph at saturation;

' branches which have a rea'l nodal extremity and a fictitious,- '"'!., '-

nodal extremity (pending branches) which'make up pending branches. ' 

with nonreactive extremities of the real graph at saturation.

The fictitious functionality F' cannot intervene in the esti-

mation of the average nodal functionality F of the real graph. On:

the other hand, a pair of pending branches, for example, of order-:'., ....

zero, must be assimilated into a classic branch of order zero and .

anti-order one. In particular, this occurs because of this,: new:-'.' :'"::'

term which will be modified due to the structural condition of'. ..:.'-',.-;'

critical transition. ' ..
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4. Systems Which Include Points With Different Reactivity.

If, for certain appropriately chosen chemical systems, it can;--:'..

be assumed that for a sufficient degree of approximation bonds '; -

are established in the course of time and in space in an equiprobable".;' .;.'

manner, then, in general, the bonds will be created under the

influence of various factors. This will depend on energy, steric ''i'

properties, etc. These various constraints make it possible to

classify the bonds according to reactivity of the points between'

which they are established and in relationship to each other. The

reactivity, or preferential capability of establishing a class of . .1"5'

bonds, could, therefore, be expressed in terms of probabilities.

Let us consider a heterogamic system whose points B correspond,

for example, to various species Bi which have different reactivities ' ''..

according to some proportion Xi ..

If Pi is the proportion of p6ints of species Bi which have;

reacted at a given moment, it is possible to define a relative

coefficient' of reactivity ri of points from species B which have' : :' ·'

the smallest reactivity and with respect to points of species Bi ' 

such that:

- ., . .

This coefficient only has' a meaning in an evolution region.

which corresponds to a proportion 'of points Bi involved in the re-

action which is less than one.

The probability that a permissible bond will be established:'"

between a pointA anda .point Bi will be: .

P.niPi 

where the index i depends' on the distribution of the various species 

among the corners. Thus, it is possible to express the various

69,;



relationships describing the system 'as a function of pothe rate ·;

of evolution taken with respect .to the least reactive species. It 

is also a function of the known proportions Xi and the coefficients '

ri which are known or assumed known. '

5. Degradation. ' '

As we have already indicated, degradation is the process which ., ;;

is inverse to the process of synthesis. The statistical descrip-

tion of a macromolecular multifunctional system during degradation '" '

follows immediately from the preceding considerations by replacing

the generalized. evolution rate p by its complementary term d, which

is the generalized rate of degradation.

In the case where the initial state of the system is such. that

the corresponding graph is not planar, it is possible to predict a .:

point of degelification. '-' 

If the rupture of the bonds does not take place a priori in an..'-'

equiprobable way,% the preceding remarks would have to be taken into

account.

It is possible 'to give a statistical description using the

presented theory of the'degradation of systems which'are not macro-'

-molecular systems in the proper sense. Thus, the degrading evolution '.

of a random graph whose 'linear components have tetrafunctional and': .'..

monofunctional corners represents a model of thermal cracking, which' ;: .

possibly can be' hydrogenating,of "heavy" hydrocarbons for which' it 

is particularly simple to give a statistical description. ' . '

.70.
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CONCLUSION ' 

The experimental data surrounding the' phenomenon of .gelificat'ion': ....

lead to research 'regarding the.random evolutilve structure of the , ,: 

molecular network which develops in the course of the chemical

reaction based on the system of molecules.

We have examined the behavior of macromolecular multifunctional'.

systems from the structural and stochastic point of view. The 

structural or topological aspect encompasses the totality of possible,l.

configurations of structure in the sense of Konig in a straight

forward manner. The stochastic aspect describes the chemical re-': ,;.:

action at each moment of the evolution in the form of a random

distribution of. bonds which' are chemically poss.ible between reactive',..,

functions carried by the molecules. Thi's point of view leads us -to

distinguish two' particular classes of systems which obviously -'exist:-

homogamic systems for which 'the chemical bonds are made between:..

arbitrary pairs of points and heterogamic systems for which, on the'

other hand, the bonds are formed, in a specific manner. ..

The elementary'given data of the theory *of graphs make' it'

possible to give an axiomatic definition for the 'important concepts

involving intermolecular and intramolecular bonds.' This is also

true for the' gelified and nongelified state. We were able to

establish that the passing from one state to another must necessarily'-:',

take place during the evolution.' Certain characteristic quantities

of the system graph, which are functions of its structural parameters .'

and its evolution rate, satisfy: a particular relationship which is

called the structural condition for critical transition. The study.;':".:-'. . .

of this relationship shows that it cannot always be satisfied,

particularly for heterogamic systems. Consequently, when bonds are_

formed in a specific manner, gelification cannot be produced when.. .- ', :

the ratio of the number of complementary points present 'satisfies- ."?, I,.

two inequalities, which are called parametric condition-of critical "' .-".
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transition. The latter takes into account the average functionality,:: /

and the proportion of each species, of points which belong to- the

nodes of the net. .-

When this condition is satisfied in the case of heterogamic

systems which are quasi-stoichiometric,we were able to experimentally

verify the fact. that the gelification points can be theoretically . :

predicted with an accuracy of the order 1 part per 100 for various 

values of the structural parameters.

Among the various application possibilities and generalizations' .- .

of the theory, we should note the following two immediately: the 

inclusion of reticulation and vulcanization in a special case of the'-:

gelification phenomenon and the calculation of various average

molecular quantities (in number, in weight, in z, etc.) should be .,:..

mentioned. This is true, not only .for the insoluble fraction when . ,

it exists, but also true for 'the linear part and for the ramified . .

part of the soluble 'fraction.

The generalization of the theory to systems which comprise

monofunctional units is possible due to simple assimilation. It is .

implicitly contained in.the statistical method of description of

the net and consists of identifying the monofunctional entities with. -;

fictitious nodal extremities. ' 
'

.

Elsewhere, we were able to show that the possible nonequireac-

tivity of chemical functions can be expressed in terms of probability.;-

Finally, since it was independent of the direction of evolution '

selected, the present stochastic description also constitutes a

theory of degradation of macromolecular multifunctional compounds'. .

The- present theory, as well as previous ones, could be generalized

to chemical compounds having various origins. It was established - :

for the study of'macromolecular organic compounds. It is sufficient ':'..

to consider the fact that the nature of the bond is, for. example,:.. ...

electrovalent, or of the secondary type such as a hydrogen bond,: or-'
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of the Van- der Waals interaction type. It would also be possible..:'.

to consider evolutionary systems. from the same theoretical point of -.- :'-.i.

view which 'would lead to synthet'ic or natural inorganic gels, organic'::

gels.having an animal or vegetable origin or, finally, certain

transitory relationships' with living matter such 'as the antigene-',"'' , : ,::

antibody system . '

It may be' seen paradoxical' that the systematic study of the.

gelification region does not seem'to have been the object of a large , ..

number of papers in macromolecular chemistry [1131 [114].' It is a

discipline in which 'the gelification region' (precipitation) is.

constantly being studied. This is also due to the method of ex-

perimentation. This is the case in immunology where one of the

major problems is the study of the precipitation region of the

antigen-antibody complex. This region i's located between a zone '

of excess antigenes and a zone of excess antibodies or inhibition

zones. Even though the problem is not simple, the important results.,' :

obtained by the'Pasteur School regarding the multispecific nature o'f, . .

multifunctional antigenes and the monospecifity of various types of ': ''' :

bifunctional antibodies ·116] will lead to an interpretation of the-'",

behavior of the antigen-antibody system according to a true hetero.-

gamic system comprising several 'types of bonds .(specifity). ;' .. l....

Consideration of cyclic structures'will make it possible to place 7'., :.:.

it within the framework of the net theory o fPauling [117]. -' · ...

As can be seen,' the theory and its application possibilities .:: :.-.,.:;

shown here is located halfway. between the activities of chemists,.

physical chemists, biologists and mathematicians. In order to

develop and describe it, an involved terminology had to be used which'. ' :

can satisfy no one. We do not mean to say that it is a definite :.. '

theory, just like any other theory. Primarily, we wanted to show','" :.
'
: '." .

that the theory of graphs could contribute to the knowledge of-the ..... : - '

random structure of macromolecular 'compounds. We wish to suggest .'' .-

to others a particularly important application of combinatory.

topology. We wanted to expose 'in'a general way the theb'ry of graphs"':'

in its topological relationship with three-dimensional space. (theory ' .' ,i
·

of nodes). Unfortunately, it is not well known' by' nonspecialists.-'
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of nodes). Unfortunately, it is not well known by nonspecialists. ' 

We hope we have reached our goal.,

"In our efforts to understand reality, we are similar to a : .,

person trying to understand the mechanism of a closed watch. He .

sees the dial and the moving hands. He hears the tick-tock, but he ",;' ,

has no way to open the case. If he is ingenious, he can think of 'l' ,-

a mechanism which can explain all of the observed facts. However,

it is possible for him:to ever be' certain that the idea he has is

the only one which can explain the facts he has observed".

A. Enstein and L. Infeld

(The Evolution of Ideas in Physics)'.

7- . .4·. · ·: -i . , - ;, · :. :

-I'. ',

..: . !:' /: :- :: .- -
U .,- .- :. .. ' , ; .. -. . [-

,. , , :,' .1(..U.

74 ' ' , .



REFERENCE

1. G. Champetier. Macromolecular Che
Edit., Paris, 1957.

'2.- \\'. }1. C.ARoral.:ns. - TIoras. 'Fara lday ,Soc., 19363, ;' ,
t~5. ··~

3. h. 11. hi ,: Li: ct A. C. I [ovi:Y. -. .1. An,. Chent. Soc.,
1929, 51, 509.

4. fl. II. Nj,::x.,:, P. A. VA.N iwi:i .i .: I. r. E. T'j . Ii-

J. Ant. C/hret,. Suc., 1931, 61, '5S.
5. IL. 11. :Ni .,:, P'. A. VAN DIA1: 3Iv.:X et .". 1';. .'.': .

- J. Al . Clici. Sot., 1931, C1, 22CS.'"
6. I I. l .] j,;:.xl.-.: el 1'. 1". ]I:'-tI. --- J. A mn. C/je. oc,

19.0, 62, '1053.
7. ]I. ] l. u,:j.c: et 1". J.". Pi:'r ;.- i. - J. Ami. Choem. Soc.

i 9';, 63, 481.
S.. 1'. J. FL.ol. - J. Amf. Chril. Soc., 19j 1, 63, 3083..
9 1. 1'. J. I'y.ojir.-- J. A n,. Clhc,I. Soc., T1'9 , 63, 3"091 I.

10. P'. J. F].olv. - J. Am. Chcre. Soc., 19-.1, 63, G309.
1I . P. J-T . J"o . J- / . P.ys. Chire., '194'2, 46, 132.
.2. '. J. Fioorv - J. Chucn,. ])hys., 19j', 12, '25.
13. 1'. J. J',.ouv. - d. Am. Chcu. Soc., 193I 6G, 333J.

i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15. 1'. J. I ". J. A. . c . Soc., 190,62, 15. I'. J1. Flour. -- J. Amn. Chen,. Soc., 1950, 62, 105 .
16. C. C,.l.,M j-:tT' etj CIt '. , ':uGO-.. - ftec. T''rav. Chint.'

J'aye-Ja.%, 'I950, 69, SS.
17'. . T. I "d. r '.::. - ,l. Elln. C/iec,,., 1938, 30, 689.
IS. T'. I. ItxA) cL It. F. -I-AN-N. 1 lwd. Gcli C/ t

19'.0, 32, 69'. .
19. L. L. N\V':1 . et 11. J.AcoIso.-. 11tstllt;,s cit'.S dalls

A dvancing FrJ,,ts iw l, cmic'.dry. S. IL. Twis,: Edi.
hCiltdvild P'ulilShiuig C,,,'p. New oirk,"19'.5, cIllp.6. .

par \V. 11. S'oc.:mavu.
20. WV .V .. .tVz:I.. I /d.:
21.. F. T. \\A Lu;I:, ct. T '.. - J. Oil ald Colonr' :,

C/en . Ass., 1951, 34, 311.
22. 1. \\ . a c*l:n ct 1. M .s.c:t. - J. Amti. Chen. Soc., i 955,

'77, 300;.
["i

23. V. IIW 1. ,,g.N . . - .1. C/e,.. iPhys., 93, 11,
2'. \V. 11. -'rJc;. m : . C/lcnt. PIhs., 9.'.12, 125.:
25. ]I. J.c¢o,:SoN cCt W. II S','o rc;. --.1. C/ hcn.. "I.

19:), Is, 1 6 ., 1. . '
6. F". E'. Jfmyvs. -. J. C'hore. Phlys., .1955, 23, 1515. 

:'27. II. W. Knt. J-. Chcm. Pitys., O95S, 62, 9M9.
28. .'. ]'. ] zc.j: e, J. I. G1j11s CL ] 11. 6 J.. C/'ic. l C

Jhys., 1958, 62. ' 72.
29. F. I'. 1li'cr. -- J. C/ere. Physc., 1958,62, 977.
30. 11. 11. zolms F.. Z.~1. i t J. ]'. j Pk-l'j. J. :Chem.

'h/ys., 95S, 62, 979.
31.. ]I. STjl).u NuCI:1 et ., IjxY. 1--3etr. .1935V. , G , 1618. I
32. It. C. .W. et l: ]. F BooK,.1 K a N . -Proc. J05t...

Soc., 1937, A 163, 203.
33. W. J1. S-,cOCK A. Y:n et 11. JdAcoulnso -- J. Chcm. P/hys.,

1 93, 11, 393.
3', C. \Wa,.,.tc..-- J. Am. C/ehoe. Soc., 1095, 67, S',. 
35. W. Sol."pox. -- J. Soc. Chon. Ind., 191G, G,5, 107.
36. WV. T1.,l.ox, 'P. 11Ho, ct 1. Z'L'. -d . Jobdm. Sci,

37 10 J. :',?"oS
37. N. Som'r o.. et 1'. JIo '.. iol $c,.

335.
38. T. I1ol.' et NY. S$.%:l so . - Proc. Rloy. Soc.,: 9 05'3,

A G ,,o =23S, 35G.'

:75;

IT

·~~~~~~~ ?

histry. Armand :Colin',. 

'~~~~~~~~: ." 'L. -:q

' .. · , ' 

. . ; ~~~~.. - ;I

. . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~i

-' .' .7' /' . ; ,

· .. , ....7" .' ,..'7~~ :. .

.... - .~·: -,

,.,.., .

-~~~~~~~~~~~~~.·

.-··~~~~~~~~~~~~~~~~~~~~~~~~

··~~~~~~~~~ · 



39. B. N. J..n. J. I'otym. Sci., 195;, 14, 535.
r0'.; . Conioo ,. - J. C'hcml.l IPys., '195,. 22, 610.

A. .1. GonIoN, 1. ~[. (;,IEll;V'SON et 1. 1). 1[C\.IILI. A.;

T'rans. ],'-ar1aay Sor., 195G, 52. 1012.
42, 'M. Golmo. et 1. J. Roi.. - J. PIolym. Sci., 1956G, 21,

2 27.
43. 31. GoiIo. Ct 1. 1). DicMI.. A -. D i .,lhIkromol.

Clcm., 1958, 23, tISS.
L, . t. h:' c A. J. SJ. P-lgih,. Sc;.,

1935, 29, 281.
45. 1. S. Itl.lr.:v. - JabiaI 'Tl#chlol., 1x95-. I; I.

4G. I.. C. C.sI:. -- .J. I'ulyn. Sc., 1.957, 2G, '3;3.
47. 1. . C. sI:. -- J. Puly. Sci., 195, 29, , '3.
4S . 1,. .C. Csl:. -- J. P'ulyiL. Sc., 1'9.,9, 37, 13.5.
49. L. C. C JA:. . -JPyn. l'. S.:, 1960, 4, 27,,.
50. A. I1I GC.\couo. -- .1. i'dm. Sci., 191;0, 4.7, 43.5.
51. S. 1I.I. XnI:f CL 1). I Iti:.NCII. - J. i)o1ty . Sri., 1956,

20, 7.
52. 1.. S. AI.N:.. - J. I'VlYn. Sci., 19,t;, 21, 3",9.
*53. :[. Jol'.tNSO. - J. Appl. J'ulym. Sc;., 19";0, 4. 129. , .
54! .I. Jlt.oltv et J. RIkNa:II, Jr.-J. CII'i. J'h.., I9 I3,D

11, 512.
'r5-. 'I. J. e t.OI CI J. I:I{ Eril Jr.- J.Cc. Phys., 1s913,

11, .2, 1.
5G. 1. ]t. Scr.\ o:r,.- .x et I'. .I xm. l :¢n'.-- J.1 Al. Chien; Soc.,:.

191S, 'i0, 2709.
$ 57. J. 1;. eSL.\r0 r';l: ' et 1'. J. Fl.oJlv. - .. An;. ClIcm.

Sc., 1 9.;0, 72, GS39.
5S. 11. S. ]1.1.v et1). W. ..1. OsimONI'. -- P'(int. 'cchiIol.,

:'I.;S, 13, 217. 
59. C. A. J. 1 o[:v :. -- J. lolIlm. So., 195; , 21, 1.
GO. C. A. J. Ilo:rvl:. -- J. Po'lilm. Sci;, 19.5G, 21, 11.

,61. C. A. .1. 1 lorNv: et ]). A. Su'rro.x. --- J. Am. Oil Chvcm.
Soc., 195G, 33, 312. .

2.; ''. ]KAItrj et L T'. INoc.ucmI. -- ]iogyo, HJagaklr Zass/hi,
S9G1, G4, 398.

63. Y. JANAKA et 1.. lAILCIII. -- J. Appl. pqohyn. Sc;,
5193, 7, IS5I.

G'. E. 1Mroro. -l .iooln.sli Tc1 nho, 1950, 2, 22G.

65. F. C;. A. So.Ni: Cet W. A. GC. GCIItAtA.'!. -- llOr1aIIC

']'olynlcrs. Acad. Prcss, 1952.
66. F. C;. 1L. GLCi:l.I'r'. - - Inorganzic lPoymer ChICnmslrh.

I;uttewoIt\tI antl CO. Publishers, 1963.
G7. J. ]:. Ei].Iti GI: Ct J. 1). r.nltY. -J. Phys. Chcr.,

I955, S, , 92.
6S.. 1:. J. CoLDW:nc cL.T. W. WIz.LL.m\m. - Disc. JFradcray

Soc., 1952, 13, 22!1.
G69. 1. 3. GOL.I:r.IG.- J. ml. CAm.C,. Soc., 1952, 74/7

5715.
70. ]'. J. GJI.nriIc - J. Alzl. Cltclm. Soc., 1953, 75, 3127.
7 . T. A A.xNO, 1. SYoz7, T. 'foKu.NA.GA Ct S. SA.o. - B3il;c

JournalO, 1gG'.), 5, 9.

72. M. T. 1'.%A..LlT:n ct 1. AI.ADJ) M. -- J. J7hcorct. ]Mo.,

1963, 5, 211.
73. . Goi,,oN. - Ilroc. Iloy. Soc. (Lonldon)i 19G2, A 2.CS,

260.
74. 1. J. GoJ n. - 'Proc. Cam. PhIil. Soc., 1948, 45, 3G0.
75. 1. Cool). -P'roc. JRoy. Soc. (I.olidon), 19G3, A 272,

$-.
76. T. h;. }I ITnIi.. - The t/icoI'y of /Branchig Prlocesscs.

SprIigcr-\'Crlig, IBerlIn, 19G3.
77. M1. Gon:uo:x Ct G. 11. SCA.NTI.E.: lutY. T rans. Flar'aday

Soc., 195G, GO, , 'i.
7S. G. 1. )Do:soN Ct MI. GonDoN. - J. Chrcl. IPhys.,

1956, 41, 2389..
79. G. 1,. D)o0JsoN ct .r. CGo ON . - J. Chan. Plys., 1955,

43, 705. _

7 6

* ~ ~ ~ ~ ~ ~~~ ~ ... . - · 

:~~~~~~~~~~~~~~~~~·

· . ·:. ·~.. . ,'.· :-"

.' . ·

~~~~~~~.,T
! ·.

:.i .: :.

:::

·

: :

:' '': : 

: : :~~~~~~~~~ :

~~~~~~~~~~·1

. . ' .1 _, 

i 

: ~ ~ ~ ~ ~ ~ ~ ~ · : iz ' :.· 

.:·~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 a : a l: i: :s :K:: e }~~~~~~~~: ' 
.,; ' \ . ' · ! :

' ' i: , ~~~ ~~~~ ~~~~. , :, - :.:

.' : . .. .

'. .. '.' . . -· · ,Z

.n " ' . :'',' .'· ,:. , . ,,'
,,· .,

T~~~~ , : '·., 

' . " ' ', %., : . , -:

, '~~~~~~~~~~~·' '~ ' ?L'',',,. ; 

. .". . . . .·

· .'~ ~ ~ ~~i
.' ', '. .' -

. ' ' '' ' ' .... .'. % ' , -'h<s

;,:

'.. '" :

. . ~ ~ ~~~. . . . . , .. 

: . .. :·- . · ,,*



80.. M. Gordon 4nd G. R. Scantlebury. - Pre-tirage No. 513. ::
International 'Symposium on; Macromolecular Chemistry, .
Prague, 1965 J. Polym, Sci:. (to be published). 

:1. P. Wi,;IT .. L,:. -.- Poc. Comb. Phi. Soc., ' , G105, 1. .. ..
82. 1'. \\',intrl.:. - P'roc. Joy. Soc. (Lonldun), 1965, A 255, .

501.'·y._.
83. P. ]'rros et A. ]liNyr . - P'ub!. Alath. hist. 11u11ngar.

Acad. Sci., 1960, 5, 17-61.
, .. I 11. 1,. "ip;ohIl, J. M. 1 ..tmtsL'r:v. J. Soc. lhdust."

Appl~l. Mahth., 1963, Vol. 11y l}0J_,
?

$9:,-941801S. . ..... fr~l:

85. T. Vogel. - Theory of Evolutionary Systems. Gauthier-Villars, :
Edit., Paris, 1965.

86. D. Konig. -Theory.-of Finite and Infinite Graphs. Akad. Verl. ,
M. B. H., Leipzig, 1936 and Chelsea, New York, 1950. __

787. C. N .v.%. -- C. R. Aend. Sri., 1 035, 201, 1 1. G:
-C. I...Ac. Sri., 19:16, 202, 1'1'.

-][ct'. C/ile. Adta, 1936, 19, 2
' Z. lirist., 1936, 93, 415 ;.

- : ' ~-Acta Alan,., 19,7, 6,, ',r5.
S'. TV. L, Tz.... J.. iPy.. /cm., (14;3), 47, 253.

... :.:. .' - -_' _' ?J. Chc:?. '-(,,s.,(Y, , 11,, 29o,.

89. E. N. Albino of Chossione. - Fundamental Numbers of Graphs and
Incident Matrices in Organic Chemical .Compounds. These... :.....
Universite. de Buenos 'Aires Argent ina, 1962 .'____ - . . - ': ~~~~~~~~~~~~~~~~~~., . .te-

90. -D. W. il,,.u,.A. L. C. JD. Ceo,.~,.:o~ 't J. ]. .,
'.: i:. - J. C/cm. P/hys., 10.., 41, 3105. - :·'~. : .· .- : ' · :. .'

-91. C. Berge. -Theory of Graphs and Applications. 'Dunod,
Paris, 1963. . '_' _

92. G. A. m,,.c. - J. London Mlath..% c ;, 19,,, ,......
cl6 ci (91).

93.' 'S. 1 .iniscar'rcz. -- hidriodnction .to tl,'ology. Pbct,, :.
Univcrshy 1'rcs., Pr'ihcetml, I,),9.

94. C. Berge ahd A. Ghoulia-Houri. - Programs, Games and Transport::'
Networks. Dunod, Paris, 1962.

05., C. i. I:Coy1. - SItrg-,c/read ll,'chiauinsm in O'ganric
' Chcmistry. Conell iUniversitLy Press Ithaca, New

York, 1953.
96.' L. I'.P u .Ixc. -- ThICe ntreC of t Ie Chc,1ical bond. Third

E}ditiot,. Cornell University I'risc, Itlhaca, Nec Yok, .
1GO.

97. '11. ZAuN ct IT. SPooCn. - Clern. l'Cr., 1959, 92. 1375..:
9S. 11. ZmiN.et F. Sc.IwIr,,T. - Chcm. llcr., 1959, 52, i.1361
99; 1'. }I. l h.:a>LIAs. -. NAalure, 195G, 177, 127.

100.' 1'. 1. ItI:. ,.xs. -- Nattice, 195G. 177, 126.
101. If. J.Aco:.sox; C. O. ]h:1.r:i xNNx et W. 11. STrocKrMA.: n. '

J. C/hcri. '1,h.., 1050, 18, 1607.
102. S. 1). Boss, I` R. Coimnatx, W. A. L,.xcn et W. I

IlriilsoN. -- J. Polyllm. Sci., 1951', 13, 406;.' :
103. :V. 1'.'rXO~,,; et D. F. WVir.cocx.. . J.' At. Chcm. Sor,.

"19,6, 63, 358. '
10'5. C. J. BrowvN, A. liu.n ct P. V. Youi.i:. ' Nature,

195G, 177, 12S.
105.-\. W .. 0 t. ~. 1'. E'.- Chcmn.,,109, 41, 511..- ..
106. If. Fasc.zr, I. iL1A.vzI ci 11. M.xni'..-1 31ona. t ,:

953, 84, 250.
107.; F. l'.ATA et P. Dan$'r. - A ,g'. Clchm.,195%, 71, 103.
10S. 11. L. Flns. et '. WVASL.n.AN. -- J. Am. Ch/c,. Soc., .

1961, 83, 3789.
J09 . 1'. \\'.xss:n;.,tA. .-- J. Anm. Cl,cm. Soc., 1960, 82! 33. . , "·

77,



110. H. Raynaud. - Thesis for the Doctor of Sciences in Mathe- , " , :'
matics, Paris, 1966 (to be published). , ',,

111. C. M. Bruneau. - French Review of Information Processing '
(R. F. T. I.). Chiffres. 1966, Vol. 9, No. 3, p. 201-233.,

112.' C. M. Bruneau. - Nonpublished. Results (to be published). ....,

113.' G. R. Scantlebury. -Thesis -at the University of London, 1965. '- ',

M. Gordon and G. R. Scantlebury.' - J. Chem. Soc. London,
1966 (to be published).

,114. C. M. Bruneau and P. Burgaud. Nonpublished Results (to' be
published). . .,,.

115. C. M. Bruneau. International Symposium of Macromolecular :,
Chemistry. Prague, 1965. J. Polym.'Sci. (to be published). . ;:'

116. C. [..Arsi.S- Ann. tInst,. Pastoer, 1955, S6, G,.'.

117. 1. 1. lJ. A--.n. Clhcat .,ac.. a . 2ct2url;l.'oly -.. '

"' ' ,'* icr. Coni k f1Cuce. ril cipal:n.-UlIls. i/ in .- : - .Syns i i. .
1

t
1

r .:
- ', iovie dc Chii;c ,aernl ctl atr¢. pra- uc (4.96), .r ' : .,

J. IPotnl.'Sci. . (h. iareirc), . -t ':

:... . .

·: :., . , ' , ,: , .: ' ' 

.. ... . ..-

·i ~···. ' . · · . . . .-. . ,.

,78. , 


